Line spectrum reduction of a vibration isolation system via chaotic synchronization and migration control

ZUO Zhaolun, YU Xiang, LI Shuang, CHAI Kai, LIU Shuyong

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (16) : 245-252.

PDF(1747 KB)
PDF(1747 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (16) : 245-252.

Line spectrum reduction of a vibration isolation system via chaotic synchronization and migration control

  • ZUO Zhaolun1, YU Xiang2, LI Shuang1, CHAI Kai2, LIU Shuyong1
Author information +
History +

Abstract

To conceal and reduce the line spectrum components of the underwater acoustic radiation of marine vessels, a novel method was proposed for line spectrum reduction of a vibration isolation system (VIS) via chaotic synchronization and migration control.Firstly, the VIS was stabilized in a persistent chaotic motion using generalized synchronization, the multi-attractor coexistence of the chaotic synchronization system, and the effect of line spectrum reduction at different attractors were analyzed.Then, the algorithm and stability of different migration control methods, including open-loop control, linear feedback control, open-plus-closed-loop control, and open-plus-nonlinear-closed-loop control were studied separately and applied to the migration of chaotic attractors in the chaotic synchronization system.Simulation results show that there are multiple stable chaotic attractors in the VIS under generalized synchronization.By using the appropriate migration control method, the chaotic synchronization system can run stably in the chaotic motion with a small amplitude, thereby reducing the intensity of the characteristic line spectrum and the amplitude of the isolated equipment.Moreover, the method has strong stability and low energy consumption.

Key words

line spectrum reduction / vibration isolation system(VIS) / multi-attractor coexistence / chaotic synchronization / migration control

Cite this article

Download Citations
ZUO Zhaolun, YU Xiang, LI Shuang, CHAI Kai, LIU Shuyong. Line spectrum reduction of a vibration isolation system via chaotic synchronization and migration control[J]. Journal of Vibration and Shock, 2021, 40(16): 245-252

References

[1]HUBLER A W.Adaptive control of chaotic system[J].Helvetica Physica Acta, 1989, 62(2):343-346.
[2]OTT E, GREBOGI C, YORKE J A.Controlling chaos[J].Physical Review Letters, 1990, 64(11):1196-1199.
[3]KOCAREV L, PARLITZ U.General approach for chaotic synchronization with applications to communication[J].Physical Review Letters, 1995, 74(25):5028-5031.
[4]SCHIFF S J, JERGER K, DUONG D H, et al.Controlling chaos in the brain[J].Nature, 1994, 370(6491):615-620.
[5]OTTINO J M, MUZZIO F J, TJAHJADI M, et al.Chaos, symmetry, and self-similarity:exploiting order and disorder in mixing processes[J].Science, 1992,257(5071):754-760.
[6]YANG W, DING M, MANDELL A J, et al.Preserving chaos:control strategies to preserve complex dynamics with potential relevance to biological disorders[J].Physical Review E:Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1995, 51(1):102-110.
[7]朱石坚,徐道临.舰船机械隔振系统线谱混沌化控制[M].北京:国防工业出版社, 2014.
[8]LOU J J, ZHU S J, HE L, et al.Application of chaos method to line spectra reduction[J].Journal of Sound and Vibration, 2005, 286(3):645-652.
[9]张敬, 徐道临, 李盈利, 等.多源激励下双层隔振浮筏系统的线谱混沌化[J].物理学报,2014,63(18):120-130.
ZHANG Jing, XU Daolin, LI Yingli, et al.Line spectrum chaotification of a double-layer vibration isolation floating raft system under multi-source excitation[J]. Acta Physica Sinica, 2014,63(18):120-130.
[10]柴凯, 楼京俊, 杨庆超, 等.高静低动隔振系统的双时延反馈混沌化[J].船舶力学, 2019, 23(5):611-620.
CHAI Kai, LOU Jingjun, YANG Qingchao, et al.Vibration isolation system based on high-static-low-dynamic stiffness with dual time-delay feedback control[J].Journal of Ship Mechanics, 2019, 23(5):611-620.
[11]WEN G L, LU Y Z, ZHANG Z Y, et al.Line spectra reduction and vibration isolation via modified projective synchronization for acoustic stealth of submarines[J].Journal of Sound and Vibration, 2009, 324(3/4/5):954-961.
[12]曾强洪, 朱石坚, 楼京俊, 等.基于滑模控制投影混沌同步在隔振系统中的应用研究[J].振动与冲击,2010,29(12):114-117.
ZENG Qianghong, ZHU Shijian, LOU Jingjun, et al.Application of projective synchronization to vibration isolation system based on sliding mode control[J].Journal of Vibration and Shock, 2010,29(12):114-117.
[13]LI Y L, XU D L, FU Y M, et al.Chaotification and optimization design of a nonlinear vibration isolation system[J].Journal of Vibration and Control, 2012, 18(14):2129-2139.
[14]YU X, ZHU S J, LIU S Y.A new method for line spectra reduction similar to generalized synchronization of chaos[J].Journal of Sound and Vibration,2007,306(3/4/5):835-848.
[15]俞翔,朱石坚,刘树勇.广义混沌同步中的多稳定同步流形[J].物理学报,2008,57(5):2761-2769.
YU Xiang, ZHU Shijian, LIU Shuyong.Multi-stable synchronization manifold in generalized synchronization of chaos[J].Acta Physica Sinica, 2008,57(5):2761-2769.
[16]杨庆超, 柴凯, 楼京俊, 等.两自由度高静低动刚度隔振系统的广义混沌同步化[J].振动工程学报,2018,31(4):620-628.
YANG Qingchao, CHAI Kai, LOU Jingjun, et al.Generalized chotic synchronization for two-degree-of-freedom vibration isolation system with high-static-low-dynamic-stiffness[J].Journal of Vibration Engineering,2018,31(4):620-628.
[17]JACKSON E A, HBLER A.Periodic entrainment of chaotic logistic map dynamics[J].Physica D:Nonlinear Phenomena, 1990, 44(3):407-420.
[18]METTIN R, HBLER A, SCHEELINE A, et al.Parametric entrainment control of chaotic systems[J].Physical Review E:Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,1995,51(5):4065-4075.
[19]JACKSON E A, GROSU I.An open-plus-closed-loop (OPCL) control of complex dynamic systems[J].Physica D:Nonlinear Phenomena, 1995, 85(1/2):1-9.
[20]JACKSON E A.The OPCL control method for entrainment, model-resonance, and migration actions on multiple-attractor systems[J].Chaos, 1997, 7(4):550-559.
[21]王杰, 田沛, 陈陈.连续多项式混沌系统的全局控制[J].控制与决策, 2000, 15(3):309-313.
WANG Jie, TIAN Pei, CHEN Chen.Global control of continuous polynomial chaotic systems[J].Control and Decision, 2000, 15(3):309-313.
[22]柴凯,楼京俊,朱石坚,等.两自由度非线性隔振系统的吸引子迁移控制[J].振动与冲击,2018,37(22):10-16.
CHAI Kai, LOU Jingjun, ZHU Shijian, et al.Attractor migration control of a two-degree-of-freedom nonlinear vibration isolation system[J].Journal of Vibration and Shock, 2018, 37(22):10-16.
[23]俞翔, 赵建学, 柴凯, 等.柔性基础准零刚度隔振系统吸引子迁移控制研究[J].船舶力学, 2019, 23(7):866-872.
YU Xiang, ZHAO Jianxue, CHAI Kai, et al.Attractor migration control of quasi-zero-stiffness vibration isolation system with flexible foundation[J].Journal of Ship Mechanics, 2019,23(7):866-872.
[24]SUDHEER K S, SABIR M.Modified function projective synchronization of hyperchaotic systems through Open-Plus-Closed-Loop coupling[J].Physics Letters A, 2010, 374(19/20):2017-2023.
[25]ROY P K, HENS C, GROSU I, et al.Engineering generalized synchronization in chaotic oscillators[J].Chaos, 2011, 21(1):013106.
[26]江俊, 徐健学.动力系统的胞化积分轨迹法[J].振动工程学报, 1993, 6(2):194-198.
JIANG Jun, XU Jianxue.Cellurated integration method of dynamical systems[J].Journal of Vibration Engineering, 1993, 6(2):194-198.
 
PDF(1747 KB)

446

Accesses

0

Citation

Detail

Sections
Recommended

/