Extreme value distribution of vertical vehicle-bridge system response based on the grey-box model

TANG Ping,LI Yongle,XIANG Huoyue

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (16) : 75-80.

PDF(1459 KB)
PDF(1459 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (16) : 75-80.

Extreme value distribution of vertical vehicle-bridge system response based on the grey-box model

  • TANG Ping,LI Yongle,XIANG Huoyue
Author information +
History +

Abstract

In order to solve the problem that the time domain calculation efficiency of vertical vehicle-bridge system is not high, a surrogate model method for calculating the dynamic response of vertical vehicle-bridge system which combined with the grey-box identification model was proposed.Through the analysis of the vehicle-bridge system, the input and output samples were obtained and the parameters of the grey-box model were trained to minimize the response error of the vehicle-body acceleration and get the surrogate model.Finally, the efficiency and reliability of this calculation framework was verified by the Monte Carlo method.The results show that compared with the Monte Carlo simulation method, the efficiency of this method is improved obviously, the calculation time is reduced by about 7 times, and the calculation error is small.

Key words

vehicle-bridge system / grey-box model / white noise filtering method / dynamic response

Cite this article

Download Citations
TANG Ping,LI Yongle,XIANG Huoyue. Extreme value distribution of vertical vehicle-bridge system response based on the grey-box model[J]. Journal of Vibration and Shock, 2021, 40(16): 75-80

References

[1]晋智斌,强士中,李小珍.轨道不平顺激励下车辆-桥梁垂向随机振动方差解法[J].铁道学报,2008,30(6): 63-68.
JIN Zhibin, QIANG Shizhong, LI Xiaozhen.Covariance method for vehicle-bridge vertical stochastic vibration excited by rail irregularities[J].Journal of the China Railway Society,  2008,30(6): 63-68.
[2]李军强,方同.演变随机响应问题的精细积分解法[J].机械科学与技术,2000,19(4): 577-578.
LI Junqiang, FANG Tong.High-precision integration for problems of evolutionary random responses[J].Mechanical Science and Technology, 2000,19(4): 577-578.
[3]叶茂,张鹏,傅继阳,等.带弹性支撑多跨连续梁桥的车桥耦合演变随机振动[J].振动与冲击, 2014,33(3): 76-82.
YE Mao, ZHANG Peng, FU Jiyang, et al.Coupled vehicle-bridge evolutionary random vibration for amulti-span continuous bridge with elastic bearings[J].Journal of Vibration and Shock, 2014,33(3): 76-82.
[4]余志武,谈遂,毛建锋.基于车桥耦合随机振动的桥梁动力安全性分析[J].铁道工程学报,2016,33(9): 55-61.
YU Zhiwu, TAN Sui, MAO Jianfeng.Safety analysis of the bridge dynamic performance based on train-bridge coupling random vibration[J].Journal of Railway Engineering Society, 2016,33(9): 55-61.
[5]朱志辉,黄承志,王力东,等.基于车-桥随机振动模型的简支梁桥墩顶垂向动反力特征研究[J].振动与冲击,2018,37(15): 225-232.
ZHU Zhihui, HUANG Chengzhi, WANG Lidong, et al.Random characteristics for vertical dynamic reaction force of pier-top of a simply supported girder bridge based on train-bridge random vibration model[J].Journal of Vibration and Shock, 2018,37(15): 225-232.
[6]李小珍,朱艳,强士中.高速列车作用下简支梁车桥耦合振动随机响应分析[J].振动与冲击,2012,31(4): 168-172.
LI Xiaozhen, ZHU Yan, QIANG Shizhong.Stochastic response analysis of train-bridge coupling system under high speed train loads excitation[J].Journal of Vibration and Shock, 2012,31(4): 168-172.
[7]徐文涛,张建波,廖敬波,等.随机振动下多跨弹性支撑梁桥的冲击系数分析[J].振动与冲击,2017,36(3): 119-124.
XU Wentao, ZHANG Jianbo, LIAO Jingbo, et al.Impact coefficients analysis for a multi-span elastically supported bridge under random vibration[J].Journal of Vibration and Shock, 2017,36(3): 119-124.
[8]刘佩.随机地震作用下结构动力可靠度计算方法研究[D].北京:北京交通大学,2011.
[9]CHING J Y, AU S K, BECK J L.Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting[J].Probabilistic Engineering Mechanics, 2005,20(3): 199-214.
[10]AU S K, BECK J L.Subset simulation and its application to seismic risk based on dynamic analysis[J].Journal of Engineering Mechanics, 2003,129(8): 901-917.
[11]CHING J, BECK J L, AU S K.Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation[J].Probabilistic Engineering Mechanics, 2005,20(3): 199-214.
[12]李永乐,鲍玉龙,向活跃.基于代理模型的无砟轨道模拟方法及其在车-线-桥分析中的应用[J].土木工程学报,2018,51(5): 95-102.
LI Yongle, BAO Yulong, XIANG Huoyue.Simulation method and its application in dynamic analysis of vehicle-track-bridge system with ballastless track based on surrogate model[J].China Civil Engineering Journal, 2018,51(5): 95-102.
[13]HAN X, XIANG H Y, LI Y L, et al.Predictions of vertical train-bridge response using artificial neural network-based surrogate model[J].Advances in Structural Engineering, 2019,22(12): 2712-2723.
[14]杨光,杨岳,易兵,等.轮轨几何接触点的人工神经网络快速计算方法[J].铁路计算机应用,2018,27(6): 1-4.
YANG Guang, YANG Yue, YI Bing, et al.Fast calculation method for wheel-rail geometric contact points based on artificial neural network[J].Railway Computer Application, 2018,27(6): 1-4.
[15]庞学苗.基于人工神经网络的轮轨力预测[D].南京:南京理工大学,2012.
[16]毛云霄,王英杰,肖军华,等.基于过桥车辆响应的遗传算法桥梁损伤识别[J].振动、测试与诊断,2018,38(4): 696-703.
MAO Yunxiao, WANG Yingjie, XIAO Junhua, et al.Bridge damage detection using a moving vehicle response on the bridge with genetic algorithm[J].Journal of Vibration, Measurement and Diagnosis, 2018,38(4): 696-703.
[17]FRIES R H, COFFEY B M.A state-space approach to the synthesis of random vertical and crosslevel rail irregularities[J].Journal of Dynamic Systems Measurement and Control, 1990,112(1): 83-87.
[18]翟婉明.车辆-轨道耦合动力学[ M].北京:科学出版社,2014.
[19]LJUNG L.System identification toolbox 7: getting started guide[M].Natick: The Math Works, Inc., 2008.
[20]MADSEN K, NIELSEN H B, TINGLEFF O.Methods for non-linear least squares problems[M].2nd ed.Copenhagen: Technical University of Denmark, 2004.
PDF(1459 KB)

Accesses

Citation

Detail

Sections
Recommended

/