[1]庄雨璇, 李奇, 杨冰如,等.基于LSTM的轴承故障诊断端到端方法[J].噪声与振动控制, 2019, 39(6):187-193.
ZHUANG Yuxuan,LI Qi,YANG Bingru, et al.An end-to-end approach for bearing fault diagnosis based on LSTM [J].Noise and Vibration Control, 2019,39(6): 187-193.
[2]曲建岭,余路,袁涛,等.基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J].仪器仪表学报,2018,39(7):134-143.
QU Jianling, YU Lu, YUAN Tao, et al.Adaptive fault diagnosis algorithm for rolling bearings based on the one-dimensional neural network [J].Chinese Journal of Scientific Instrument, 2018, 39(7):134-143.
[3]贺岩松,黄毅,徐中明,等.基于小波奇异熵与SOFM 神经网络的电机轴承故障识别[J].振动与冲击,2017,36
(10):217-223.
HE Yansong,HUANG Yi,XU Zhongming,et al. Motor bearing fault identification based on the wavelet singular entropy and SOFM neural network[J]. Journal of Vibration and Shock,2017,36(10):217-223.
[4]SONG L, ZHANG X R, SU L W, et al.Fault diagnosis approach for incipient bearing fault in wind turbine under variable conditions[J].Applied Mechanics & Materials, 2014, 599/600/601:312-320.
[5]LIU W Y, GAO Q W, YE G, et al.A novel wind turbine bearing fault diagnosis method based on Integral Extension LMD[J].Measurement, 2015, 74:70-77.
[6]ZHANG M, JIANG Z N, FENG K.Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump[J].Mechanical Systems and Signal Processing, 2017, 93:460-493.
[7]CHEN X J, YANG Y M, CUI Z X, et al.Vibration fault diagnosis of wind turbine based on variational mode decomposition and energy entropy[J].Energy, 2019,174:1100-1109.
[8]LI J M, YAO X F, WANG X D, et al.Multiscale local feature learning based on BP network for rolling bearing intelligent fault diagnosis[J].Measurement, 2020, 153: 107419.
[9]BENGIO Y, COURVILLE A, VINCENT P.Representation learning: a review and new perspectives [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828.
[10]GUO Y, WU Z Y, JI Y.A hybrid deep representation learning model for time series classification and prediction[C]∥ 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM).Chengdu: IEEE, 2017.
[11]肖熊,王健翔,张勇军,等.一种用于轴承故障诊断的二维卷积神经网络优化方法[J].中国电机工程学报,2019,39(15):4558-4567.
XIAO Xiong, WANG Jianxiang, ZHANG Yongjun, et al.A two dimensional convolutional neural network optimization method for bearing fault diagnosis [J].Proceedings of CSEE, 2019,39(15):4458-4567.
[12]CHEN Z Q, LI C, REN-VINICIO S.Gearbox fault identification and classification with convolutional neural networks[J].Shock and Vibration, 2015, 2015(5):390134.
[13]WANG J J, ZHUANG J F, DUAN L X, et al.A multi-scale convolution neural network for featureless fault diagnosis[C]∥ 2016 International Symposium on Flexible Automation (ISFA).Cleveland: IEEE, 2016.
[14]CHEN Z Y, GRYLLIAS K, LI W H.Mechanical fault diagnosis using convolutional neural networks and extreme learning machine [J].Mechanical Systems and Signal Processing, 2019,133:106272.
[15]LI J M, YAO X F, WANG X D, et al.Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis[J].Measurement, 2020,153:107419.
[16]CAI J, GACHOT C.Feature extraction of rolling bearing fault signal based on local mean decomposition and Teager energy operator[J].Industrial Lubrication and Tribology, 2017, 69(6): 872-880.
[17]INCE T, KIRANYAZ S , EREN L , et al.Real-time motor fault detection by 1D convolutional neural networks[J].IEEE Transactions on Industrial Electronics, 2016, 63(11):7067-7075.
[18]ZHANG W, LI C H, PENG G L, et al.A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load [J].Mechanical Systems and Signal Processing, 2018, 100:439-453.
[19]ZHANG L, XIONG G L, LIU H S, et al.Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference[J].Expert Systems with Applications, 2010, 37(8): 6077-6085.
[20]HUANG W Y, CHENG J S, YANG Y, et al.An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis [J].Neurocomputing, 2019, 359:77-92.
[21]LIU H H, HAN M H.A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings[J].Mechanism and Machine Theory, 2014, 75:67-78.
[22]LUO Y, CHENG Y, UZUNER O, et al.Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes[J].Journal of the American Medical Informatics Association, 2017, 25(1):93.
[23]KUO C C J.Understanding convolutional neural networks with a mathematical model [J].Journal of Visual Communication & Image Representation, 2016, 41: 406-413.
[24]Case Western Reserve University.Bearing data center (seeded fault test data)[EB/OL].(2013-08-16)[2017-01-02].http:∥csegroups.case.cedu/bearingdatacenter/home.
[25]WANG B, LEI Y G, LI N P, et al.A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J].IEEE Transactions on Reliability, 2018,69(1): 401-412.
[26]CHEN X J, YANG Y M, CUI Z X, et al.Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy[J].Energy, 2019, 174:1100-1109.
[27]LIANG P F, DENG C, WU J, et al.Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform[J].Computers in Industry, 2019, 113:103-132.