Nonlinear vibration responses of a rubbing rotor considering the non-probabilistic uncertainty of parameters

MA Xinxing,ZHANG Zhenguo,HUA Hongxing

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (18) : 56-62.

PDF(1326 KB)
PDF(1326 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (18) : 56-62.

Nonlinear vibration responses of a rubbing rotor considering the non-probabilistic uncertainty of parameters

  • MA Xinxing1,2,ZHANG Zhenguo1,2,HUA Hongxing1,2
Author information +
History +

Abstract

The rotor/stator rubbing fault has a serious impact on the safety and reliability of a gas turbine, and the uncertainty of the nonlinear rubbing response is an important constraint for its evaluation, prevention, and control.Therefore, considering the uncertain effects of the rotor/stator clearance, rotor unbalance and contact stiffness, the uncertain dynamic model of a gas turbine dual-disk single-axis rotor with fixed-point rubbing faults was established to study the rubbing induced vibration response characteristics and its influential parameters.For the non-smooth/uncertainty rubbing dynamic equations, the combination of the harmonic balance method and the alternating frequency-time scheme (HB-AFT) was adopted to obtain the periodic solution of the rotor system, and the non-intrusive Chebyshev interval method was used to estimate the upper/lower bounds of the nonlinear vibration response.The influence of each interval variable on the response uncertainty could be quickly quantified.Finally, the effectiveness and computational advantages of the proposed method were verified by comparing with the traditional Monte Carlo simulation.The numerical results show that the uncertainty of the parameter interval has a significant effect on the global amplitude-frequency responses of the rubbing rotor, which can lead to differences in the occurrence conditions and severity of rotor/stator rubbing fault.The research results provide a guidance for more accurate diagnosis and prevention of gas turbine rotor rubbing faults.

Key words

rotor system / rubbing / interval method / uncertainty / harmonic balance method

Cite this article

Download Citations
MA Xinxing,ZHANG Zhenguo,HUA Hongxing. Nonlinear vibration responses of a rubbing rotor considering the non-probabilistic uncertainty of parameters[J]. Journal of Vibration and Shock, 2021, 40(18): 56-62

References

[1]MA H, SHI C Y, HAN Q K, et al.Fixed-point rubbing fault characteristic analysis of a rotor system based on contact theory[J].Mechanical Systems and Signal Processing, 2013,38(1): 137-153.
[2]CHU F L, ZHANG Z.Bifurcation and chaos in a rub-impact Jeffcott rotor system[J].Journal of Sound and Vibration, 1998,210(1): 1-18.
[3]HOU L, CHEN H Z, CHEN Y S, et al.Bifurcation and stability analysis of a nonlinear rotor system subjected to constant excitation and rub-impact[J].Mechanical Systems and Signal Processing, 2019,125: 65-78.
[4]太兴宇,杨树华,马辉,等.叶尖碰摩诱发的转子系统振动响应数值分析与试验研究[J].机械工程学报, 2019,55(19): 112-120.
TAI Xingyu, YANG Shuhua, MA Hui, et al.Numerical analysis and experimental investigation of blade tip rubbing-induced vibration responses of rotor system[J].Journal of Mechanical Engineering, 2019,55(19): 112-120.
[5]JIANG J.Determination of the global responses characteristics of a piecewise smooth dynamical system with contact[J].Nonlinear Dynamics, 2009,57(3): 351-361.
[6]MA H, YU T, HAN Q K, et al.Time-frequency features of two types of coupled rub-impact faults in rotor systems[J].Journal of Sound and Vibration, 2009,321(3/4/5): 1109-1128.
[7]冯伟,刘保国,丁浩,等.非参数不确定动力学建模研究综述[J].振动与冲击, 2020,39(5): 1-9.
FENG Wei, LIU Baoguo, DING Hao, et al.Review of uncertain nonparametric dynamic modeling[J].Journal of Vibration and Shock, 2020,39(5): 1-9.
[8]NECHAK L, SINOU J J.Hybrid surrogate model for the prediction of uncertain friction-induced instabilities[J].Journal of Sound and Vibration, 2017,396: 122-143.
[9]DENIMAL E, NECHAK L, SINOU J J, et al.A novel hybrid surrogate model and its application on a mechanical system subjected to friction-induced vibration[J].Journal of Sound and Vibration, 2018,434: 456-474.
[10]毛文贵,李建华,刘桂萍,等.考虑油膜不确定性的滑动轴承-转子系统不平衡量识别[J].振动与冲击, 2016,35(18): 214-221.
MAO Wengui, LI Jianhua, LIU Guiping, et al.Unbalance parameters identification for a sliding bearing-rotor system considering the uncertainty of parameters[J].Journal of Vibration and Shock, 2016,35(18): 214-221.
[11]左彦飞,江志农,冯坤,等.转子支承系统临界转速概率分析的随机响应面法[J].振动与冲击, 2019,38(24): 85-90.
ZUO Yanfei, JIANG Zhinong, FENG Kun, et al.A stochastic response surface method for probability analysis of critical speeds of a rotor system[J].Journal of Vibration and Shock, 2019,38(24): 85-90.
[12]傅超,任兴民,杨永锋,等.考虑参数不确定性的转子系统瞬态动平衡研究[J].动力学与控制学报, 2017,15(5): 453-458.
FU Chao, REN Xingmin, YANG Yongfeng, et al.Transient dynamic balancing of rotor system with parameter uncertainties[J].Journal of Dynamics and Control, 2017,15(5): 453-458.
[13]YANG Y F, WU Q Y, WANG Y L, et al.Dynamic characteristics of cracked uncertain hollow-shaft[J].Mechanical Systems and Signal Processing, 2019,124: 36-48.
[14]YANG Y F, WANG Y L, GAO Z.Nonlinear analysis of a rub-impact rotor with random stiffness under random excitation[J].Advances in Mechanical Engineering, 2016,8(9): 1-12.
[15]王威,甘春标.不确定性激励下碰摩转子的振动响应识别[J].振动与冲击, 2019,38(18): 122-127.
WANG Wei, GAN Chunbiao.Identification of the vibration responses of a rub-impact rotor under uncertain excitations[J].Journal of Vibration and Shock, 2019,38(18): 122-127.
[16]YANG L C, HE K, GUO Y L.Reliability analysis of a nonlinear rotor/stator contact system in the presence of aleatory and epistemic uncertainty[J].Journal of Mechanical Science and Technology, 2018,32(9): 4089-4101.
PDF(1326 KB)

1202

Accesses

0

Citation

Detail

Sections
Recommended

/