[1]GU X H, YANG S P, LIU Y Q, et al.Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis[J].Measurement Science and Technology, 2016,27(12): 125019.
[2]刘文朋, 刘永强, 杨绍普,等.基于典型谱相关峭度图的滚动轴承故障诊断方法[J].振动与冲击, 2018,37(8): 87-92.
LIU Wenpeng, LIU Yongqiang, YANG Shaopu, et al.Fault diagnosis of rolling bearing based on typical correlated kurtogram[J].Journal of Vibration and Shock, 2018,37(8): 87-92.
[3]张龙,毛志德,杨世锡,等.基于包络谱带通峭度的改进谱峭度方法及在轴承诊断中的应用[J].振动与冲击, 2018,37(23): 171-179.
ZHANG Long, MAO Zhide, YANG Shixi, et al.An improved kurtogram based on band-pass envelope spectral kurtosis with its application in bearing fault diagnosis[J].Journal of Vibration and Shock, 2018,37(23): 171-179.
[4]ANTONI J.Fast computation of the kurtogram for the detection of transient faults[J].Mechanical Systems and Signal Processing, 2007,21(1): 108-124.
[5]ANTONI J.The spectral kurtosis: a useful tool for characterising non-stationary signals[J].Mechanical Systems and Signal Processing, 2006,20(2): 282-307.
[6]ANTONI J, RANDALL R B.The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines[J].Mechanical Systems and Signal Processing, 2006,20(2): 308-331.
[7]LEI Y G, LIN J, HE Z J, et al.Application of an improved kurtogram method for fault diagnosis of rolling element bearings[J].Mechanical Systems and Signal Processing, 2011,25(5): 1738-1749.
[8]WANG D, TSE P W, TSUI K L.An enhanced kurtogram method for fault diagnosis of rolling element bearings[J].Mechanical Systems and Signal Processing, 2013,35(1/2): 176-199.
[9]WANG Y X, HE Z J, ZI Y Y.Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform[J].Mechanical Systems and Signal Processing, 2010,24(1): 119-137.
[10]CHEN B Q, ZHANG Z S, ZI Y Y, et al.Detecting of transient vibration signatures using an improved fast spatial-spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of short duration data from rotating machinery[J].Mechanical Systems and Signal Processing, 2013,40(1): 1-37.
[11]祝小彦,王永杰,张钰淇,等.基于自适应最优Morlet小波的滚动轴承故障诊断[J].振动、测试与诊断, 2018,38(5): 1021-1029.
ZHU Xiaoyan, WANG Yongjie, ZHANG Yuqi, et al.Method of incipient fault diagnosis of bearing based on adaptive optimal Morlet wavelet[J].Journal of Vibration, Measurement & Diagnosis, 2018,38(5): 1021-1029.
[12]WANG D, TSUI K L.Dynamic Bayesian wavelet transform: new methodology for extraction of repetitive transients[J].Mechanical Systems and Signal Processing, 2017,88: 137-144.
[13]BOZCHALOOI I S, LIANG M.A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J].Journal of Sound and Vibration, 2007,308(1/2): 246-267.
[14]MIAO Y H, ZHAO M, LIN J.Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification[J].Mechanical Science and Technology, 2017,28(12): 1-14.
[15]WANG D.Spectral L2/L1 norm: a new perspective for spectral kurtosis for characterizing non-stationary signals[J].Mechanical Systems and Signal Processing, 2018,104: 290-293.
[16]WANG D.Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients[J].Mechanical Systems and Signal Processing, 2018,108: 360-368.
[17]ANTONI J.The infogram: entropic evidence of the signature of repetitive transients[J].Mechanical Systems and Signal Processing, 2016,74: 73-94.
[18]WANG Y, XU G H, LIANG L, et al.Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis[J].Mechanical Systems and Signal Processing, 2015,54/55: 259-276.
[19]DING X X, HE Q B.Time-frequency manifold sparse reconstruction: a novel method for bearing fault feature extraction[J].Mechanical Systems and Signal Processing, 2016,80: 392-413.
[20]MOSHREFZADEH A, FASANA A.The autogram: an effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis[J].Mechanical Systems and Signal Processing, 2018,105: 294-318.
[21]WAN S T, PENG B.The FERgram: a rolling bearing compound fault diagnosis based on maximal overlap discrete wavelet packet transform and fault energy ratio[J].Journal of Mechanical Science and Technology, 2019,33(1): 157-172.