Statistical analysis of fundamental period of RC structure based on multi-source measured data

WANG Zetao, CHEN Jun, SHEN Jiaxu

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (19) : 212-220.

PDF(3073 KB)
PDF(3073 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (19) : 212-220.

Statistical analysis of fundamental period of RC structure based on multi-source measured data

  • WANG Zetao1, CHEN Jun1,2, SHEN Jiaxu1
Author information +
History +

Abstract

Here, through massive literature retrieval, the measured information of 873 reinforced concrete (RC) structures in different countries and regions with a height of less than 100 m was collected to obtain a database including 1 482 fundamental period values about these structures’ section long and short axes. The cluster analysis method was used to check the representativeness and integrability of the database, and then distribution laws of fundamental period versus structure height, number of floors and height-width ratio were analyzed statistically. Referring to the existing empirical formulas of natural vibration period of RC structures at home and abroad, combined with the structural conceptual design, regression formulas for fundamental period and structural geometric parameters were deduced, and distribution differences of part subsets in the database were discussed contrastively. The results can provide a reference for engineering design and parametric modeling.

Key words

reinforced concrete (RC) structures / fundamental period / empirical formula / cluster analysis / regression analysis / multi-source data

Cite this article

Download Citations
WANG Zetao, CHEN Jun, SHEN Jiaxu. Statistical analysis of fundamental period of RC structure based on multi-source measured data[J]. Journal of Vibration and Shock, 2021, 40(19): 212-220

References

[1]徐培福,肖从真,李建辉.高层建筑结构自振周期与结构高度关系及合理范围研究[J].土木工程学报, 2014, 47(2): 1-11. 
XU Peifu, XIAO Congzhen, LI Jianhui. Study on relationship between natural vibration periods and heights of structures for high-rise buildings and its reference range[J]. China Civil Engineering Journal, 2014, 47(2): 1-11.
[2]包世华, 方鄂华. 高层建筑结构设计[M].北京: 清华大学出版社, 1990.
[3]SATAKE N, SUDA K I, ARAKAWA T, et al. Damping evaluation using full-scale data of buildings in Japan[J]. Journal of Structural Engineering, 2003, 129(4): 470-477.
[4]漆桂芬. 高层钢筋混凝土建筑结构动力特性的实测与分析[J]. 地震工程动态, 1983(增刊1): 56-62. 
QI Guifen. Measurement and analysis of dynamic properties of high-rise reinforced concrete building structures[J]. Earthquake Engineering Trends, 1983(Suppl.1): 56-62.
[5]王广军. 高层建筑高振型自振周期的统计结果[J]. 地震学刊,1992(3): 53-60.
WANG Guangjun. Statistical analysis on free periods of tall buildings[J]. Journal of Seismology, 1992(3): 53-60. 
[6]施卫星, 王进. 钢筋混凝土框架结构动力特性研究[J]. 地震工程与工程振动, 2010, 30(6):87-91. 
SHI Weixing, WANG Jin. Research on dynamic characteristics of reinforced concrete frame structures[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(6):87-91.
[7]那仁满都拉, 布仁, 宝音图, 等. 基于常时微动观测的钢筋混凝土建筑物振动特性及其地域差异[J]. 振动与冲击, 2016, 35(4): 22-27.
NARENMANDULA, BUREN, BAOYINTU, et al. Regional differences and dynamic characteristics of RC buildings based on microtremor measurement[J]. Journal of Vibration and Shock, 2016, 35(4): 22-27. 
[8]王明振, 闫培雷, 孙柏涛. 高层建筑基本周期经验公式国内外研究现状[J]. 地震工程与工程振动, 2016, 36(5): 76-85. 
WANG Mingzhen, YAN Peilei, SUN Baitao. Review of domestic and international research for high-rise buildings’ fundamental period empirical formulas[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(5): 76-85.
[9]GALLIPOLI M R, MUCCIARELLI M, SKET-MOTNIKAR B, et al. Empirical estimates of dynamic parameters on a large set of European buildings[J]. Bulletin of Earthquake Engineering, 2010, 8(3):593-607. 
[10]建筑结构荷载规范:GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
[11]Minimum design loads for buildings and other structures: ASCE/SEI 7-05[S].Reston: The American Society of Civil Engineers,2005.
[12]GOEL R K, CHOPRA A K. Period formulas for moment-resisting frame buildings[J]. Journal of Structural Engineering, 1997, 123(11): 1454-1461.
[13]LEE L H, CHANG K K, CHUN Y S. Experimental formula for the fundamental period of RC buildings with shear-wall dominant systems[J]. Structural Design of Tall Buildings, 2000, 9(4): 295-307.
[14]PAN T C, GOH K S, MEGAWATI K. Empirical relationships between natural vibration period and height of buildings in Singapore[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(3): 449-465.
[15]徐培福, 郝锐坤, 赵西安. 我国高层建筑结构综述(下)[J]. 建筑结构学报, 1983, 4(3):20-27.
XU Peifu, HAO Ruikun, ZHAO Xi’an. Summary of domestic high-rise building structures (Part Ⅱ)[J]. Journal of Building Structures, 1983, 4(3):20-27.
[16]LAGOMARSINO S. Forecast models for damping and vibration periods of buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1993, 48(2/3): 221-239.
[17]HONG L L, HWANG W L. Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(3):327-337.
[18]NAVARRO M, VIDAL F, ENOMOTO T, et al. Analysis of the weightiness of site effects on reinforced concrete (RC) building seismic behaviour: the Adra town example (SE Spain)[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(10):1363-1383.
[19]MICHEL C, GUGUEN P, LESTUZZI P, et al. Comparison between seismic vulnerability models and experimental dynamic properties of existing buildings in France[J]. Bulletin of Earthquake Engineering, 2010, 8(6):1295-1307.
[20]GILLES D, MCCLURE G. Measured natural periods of concrete shear wall buildings: insights for the design of Canadian buildings[J]. Canadian Journal of Civil Engineering, 2012, 39(8):867-877.
[21]施卫星, 陈希, 曹加良. 多因素型结构基本自振周期预测模型的研究[J]. 工程力学,2013,30(3):146-151. 
SHI Weixing, CHEN Xi, CAO Jialiang. Multi-factor predictive models of structural fundamental natural period[J]. Engineering Mechanics, 2013,30(3):146-151.
[22]黄真萍, 任旋, 曹洋兵,等. 钢筋混凝土建筑物振动特性的高度效应研究[J]. 世界地震工程,2017,33(4):87-93. 
HUANG Zhenping, REN Xuan, CAO Yangbing, et al. Study on the height effect of vibration characteristics about reinforced concrete buildings[J]. World Earthquake Engineering, 2017,33(4):87-93.
[23]Architectural Institute of Japan. Damping in buildings[M].Tokyo: Architectural Institute of Japan, 2000.
[24]王广军, 樊水荣. 建筑自振周期计算方法和实测资料手册[M]. 北京: 中国建筑科学研究院, 1988. 
[25]HO N,KAWASE H.Evaluation of dynamic property and seismic performance of low-and mid-rise RC buildings based on microtremor measurment[J]. Journal of Structural and Construction Engineering,2004,577: 29-36.
[26]胡进军, 温瑞智, 周正华. 高层RC结构的环境振动实测模态和自振周期分析[C]// 第五届全国建筑振动学术会议. 西安:《防灾减灾工程学报》编辑部, 2008.
[27]刘红彪, 郭迅, 梁永朵,等. 9度设防区房屋结构自振周期测试[J]. 建筑结构, 2011, 41(5): 60-62.
LIU Hongbiao, GUO Xun, LIANG Yongduo, et al. Structural natural period measurement in seismic fortification intensity 9[J]. Building Structure, 2011, 41(5): 60-62.
[28]吴伟达. 构筑物场地微震动波动响应特性研究与应用[D]. 福州: 福州大学, 2015.
[29]任旋. 基于微振动监测的地基与建筑动力特性及共振效应[D]. 福州: 福州大学, 2016.
[30]高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京: 中国建筑工业出版社,2010.
[31]朱明. 数据挖掘[M].合肥: 中国科学技术大学出版社, 2002.
[32]周志华. 机器学习[M].北京: 清华大学出版社, 2016.
[33]LAGOS R, KUPEER M. Performance of high rise buildings under the February 27th 2010 Chilean earthquake[C] // International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake. Tokyo:ISELL,2012. 
[34]同济大学概率统计教研组. 概率统计[M]. 上海: 同济大学出版社, 2013. 
[35]FRITZ W P, JONES N P. Predictive models for the median and variability of building period and damping[J]. Journal of Structural Engineering, 2009, 135(5): 576-586.
PDF(3073 KB)

397

Accesses

0

Citation

Detail

Sections
Recommended

/