Corrosion damage identification of suspenders of arch bridges in service based on guided wave multi-point scattering

CHEN Xin, ZHU Jinsong, LIN Yangzi, GUAN Youping

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (19) : 295-301.

PDF(2096 KB)
PDF(2096 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (19) : 295-301.

Corrosion damage identification of suspenders of arch bridges in service based on guided wave multi-point scattering

  • CHEN Xin1,2, ZHU Jinsong1, LIN Yangzi3, GUAN Youping4
Author information +
History +

Abstract

Here, to ensure health and safety of suspenders of arch bridges in service, aiming at multi-point corrosion features of suspenders, a non-reference corrosion damage identification method based on multi-point scattering echoes was proposed. Firstly, the finite element model of multi-point corrosion steel wire was established by introducing a fractal function to simulate steel wire rusty surface. Then, wavelet transform was used to extract multi-scale energy spectra of multi-point scattering echoes, the energy spectra were taken as feature vectors to construct corrosion indices, and analyze effects of guided wave frequency on corrosion recognition results. Finally, guided waves were used to detect suspenders of a certain in-service arch bridge, and the detection results were verified by destroying local PE (Polyethylene) layers. The results showed that multi-scale energy spectra of multi-point scattering echoes change significantly under different corrosion degrees, corrosion indices increase linearly with increase in corrosion degree; with increase in guided wave frequency, its identification index’s damage sensitivity rises, compared with guided wave frequency of 10 kHz, sensitivity coefficients of 50 kHz and 100 kHz increase by 6.13% and 131.902%, respectively; the actually measured corrosion indices of suspenders are obviously different, and they are distributed in range of 3.91-9.65; detecting results of PE failure tests and recognition results of corrosion indices are consistent.

Key words

suspender of arch bridge / corrosion damage identification / guided wave / multi-point scattering

Cite this article

Download Citations
CHEN Xin, ZHU Jinsong, LIN Yangzi, GUAN Youping. Corrosion damage identification of suspenders of arch bridges in service based on guided wave multi-point scattering[J]. Journal of Vibration and Shock, 2021, 40(19): 295-301

References

[1]余芳, 贾金青, 姚大立, 等. 腐蚀预应力钢绞线的疲劳试验分析[J]. 哈尔滨工程大学学报, 2014,35(12):1487-1491.
YU Fang, JIA Jinqing, YAO Dali, et al. Experimental anayls is of fatigue properties of corroded prsertessings trands[J]. Journal of Harbin Engineering University, 2014, 35(12):1487-1491.
[2]李富民, 袁迎曙, 杜健民, 等. 氯盐腐蚀钢绞线的受拉性能退化特征[J]. 东南大学学报(自然科学版), 2009,39(2):340-344.
LI Fumin, YUAN Yingshu, DU Jianmin, et al. Deterioration of tensile behavior of steel strands corroded by chloride[J]. Journal of Southeast University (Natural Science Edition), 2009,39(2):340-344.
[3]陈鑫. 超声导波在钢绞线中传播的时频能量分析[D]. 重庆:重庆交通大学, 2018.
[4]周正干, 孙广开, 李征,等. 复合材料层压板钻孔分层激光超声检测方法[J]. 机械工程学报, 2013, 49(22):29-33.
ZHOU Zhenggan, SUN Guangkai, LI Zheng, et al. Laser ultrasonic detection of drilling-induced delamination in composite laminates[J]. Journal of Mechanical Engineering, 2013, 49(22):29-33.
[5]王茂, 周建庭, 张洪, 等. 混凝土内部钢筋锈蚀的磁记忆检测[J]. 建筑材料学报, 2018, 21(2): 345-350.
WANG Mao, ZHOU Jianting, ZHANG Hong, et al. Magnetic memory detection of rebar corrosion in Concrete [J]. Journal of Building Materials, 2018, 21(2): 345-350.
[6]LU Y, YE L, SU Z Q, et al. Quantitative evaluation of crack orientation in aluminium plates based on Lamb waves[J]. Smart Materials & Structures, 2007, 16(5):1907.
[7]WANG Y, GUAN R, LU Y. Nonlinear Lamb waves for fatigue damage identification in FRP-reinforced steel plates[J]. Ultrasonics, 2017, 80:87.
[8]LI J S, LU Y, GUAN R Q, et al. Guided waves for debonding identification in CFRP-reinforced concrete beams[J]. Construction & Building Materials, 2017, 131:388-399.
[9]SIKDAR S, BANERJEE S, ASHISH G. Ultrasonic guided wave propagation and disbond identification in a honeycomb composite sandwich structure using bonded piezoelectric wafer transducers[J]. Journal of Intelligent Material Systems & Structures, 2016, 27(13):1767-1779. 
[10]SCALEA F L D, RIZZO P, SEIBLE F. Stress measurement and defect detection in steel strands by guided stress waves[J]. Journal of Materials in Civil Engineering, 2003, 15(3):219-227.
[11]RIZZO P, SORRIVI E, SCALEA F  L  D, et al. Wavelet-based outlier analysis for guided wave structural monitoring: application to multi-wire strands[J]. Journal of Sound & Vibration, 2007, 307(1):52-68.
[12]GAUL L,SPRENGER H,SCHAAL C,et al.Structural health monitoring of cylindrical structures using guided ultrasonic waves[J].Acta Mechanica,2012, 223(8):1669-1680.
[13]何存富, 刘溯, 刘增华,等. 小波降噪在钢绞线缺陷检测中的应用[J]. 机械工程学报, 2008, 44(7):118-122.
HE Cunfu,  LIU Su, LIU Zenghua, et al. Application of wavelet denoise in defect inspection of steel strands [J]. Chinese Journal of Mechanical Engineering, 2008, 44(7):118-122.
[14]LIU Z H, XU Q L, GONG Y, et al. A new multichannel time reversal focusing method for circumferential Lamb waves and its applications for defect detection in thick-walled pipe with large-diameter[J]. Ultrasonics, 2014, 54(7):1967-1976.
[15]林阳子, 武新军, 张宇峰, 等. 基于磁致伸缩技术的桥梁缆索损伤定位研究[J]. 公路交通科技, 2011, 28(6):109-112.
LIN Yangzi, WU Xinjun, ZHANG Yufeng, et al. Research on bridge cable damnification positioning based on magnetostriction technology[J]. Journal of Highway and Transportation Research and Development, 2011, 28(6):109-112.
[16]徐江, 孙永, 周金海. 不锈钢护套对磁致伸缩导波桥梁缆索检测影响[J]. 华中科技大学学报(自然科学版), 2017, 45(2):7-11.
XU Jiang, SUN Yong, ZHOU Jinhai. Effect of stainless steel sleeve on magnetostrictive guided wave inspection for bridge cables [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(2):7-11.
[17]潘永东, 杨锋, 张东波,等. 斜拉索锚固区损伤的高阶纵向导波检测研究[J]. 桥梁建设, 2015, 45(4):52-57.
PAN Yongdong, YANG Feng, ZHANG Dongbo, et al. Research of technique of high-order longitudinal guided wave detection of damage in stay cable anchorage zone[J]. Bridge Construction, 2015, 45(4): 52-57.
[18]钱骥, 陈鑫, 蒋永, 等. 基于导波能量谱的钢绞线腐蚀损伤识别研究[J]. 振动与冲击, 2018, 37(20):120-126.
QIAN Ji, CHEN Xin, JIANG Yong, et al. Steel strands corrosion identification based on guide wave energy spectrum[J]. Journal of Vibration and Shock, 2018, 37(20):120-126.
[19]SRIRAMADASU R C, BANERJEE S, LU Y. Detection and assessment of pitting corrosion in rebars using scattering of ultrasonic guided waves[J]. NDT & E International, 2018,101:53-61.
[20]何存富, 孙雅欣, 吴斌,等. 高频纵向导波在钢杆中传播特性的研究[J]. 力学学报, 2007, 39(4):538-544.
HE Cunfu, SUN Yaxin, WU Bin, et al. Propagation characteristics of high frequency longitudinal guided waves in steel rod[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4):538-544.
[21]LIU Y J, HAN Q, LI C L, et al. Numerical investigation of dispersion relations for helical waveguides using the scaled boundary finite element method[J]. Journal of Sound & Vibration, 2014, 333(7):1991-2002.
[22]TREYSSDE F, LAGUERRE L. Investigation of elastic modes propagating in multi-wire helical waveguides[J]. Journal of Sound & Vibration, 2010, 329(10):1702-1716.
[23]钱骥, 陈鑫, 杨金川. 小波时-频变换的高强钢丝弹性波传播模态分析[J]. 应用声学, 2017, 36(6): 548-554.
QIAN Ji, CHEN Xin, YANG Jinchuan. Modal analysis of elastic wave propagating in highstrength steel wires based on wavelet time-frequency analysis[J]. Journal of Applied Acoustics, 2017, 36(6): 548-554.
[24]KIM E J, PARK S J, HEO J H, et al. Corrosion resistance of stainless steels analyzed by fractal geometry[J]. Economic Analysis & Policy, 2010, 1(2):112-116.
[25]张泽锋, 张德坤. 矿用钢丝的表面腐蚀形貌及分形研究[J]. 材料导报, 2012, 26(6):81-84.
ZHANG Zefeng, ZHANG Dekun. Surface morphology of corroded mine-used steel wire and fractal analysis[J]. Materials Review, 2012, 26(6):81-84.
[26]刘宇, 邓宏盛, 张生芳, 等. 基于W-M分形函数的三维粗糙表面摩擦生热研究[J]. 中国工程机械学报, 2018, 16(3): 194-201.
LIU Yu, DENG Hongsheng, ZHANG Shengfang, et al. Research on friction heat generation of three dimensional rough surface based on W-M fractal function[J]. Chinese Journal of Construction Machinery, 2018. 16(3): 194-201.
[27]REN W X, SUN Z S. Structural damage identification by using wavelet entropy[J]. Engineering Structures, 2008, 30(10):2840-2849.
PDF(2096 KB)

Accesses

Citation

Detail

Sections
Recommended

/