The influence of bluff body structure on the performance of a piezoelectric airflow generator using axial longitudinal vibration mode

LIANG Cheng1,2,KAN Junwu1,2,ZHANG Zhonghua1,2,WANG Shuyun1,2,HUANG Xin1,2,FU Jiawei1,2

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (2) : 9-14.

PDF(1405 KB)
PDF(1405 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (2) : 9-14.

The influence of bluff body structure on the performance of a piezoelectric airflow generator using axial longitudinal vibration mode

  • LIANG Cheng1,2,KAN Junwu1,2,ZHANG Zhonghua1,2,WANG Shuyun1,2,HUANG Xin1,2,FU Jiawei1,2
Author information +
History +

Abstract

To meet self-powered requirements of the pipeline monitoring system, a composite turbulent bluff-body piezoelectric airflow generator using axial longitudinal vibration mode was proposed in this paper.The structure and working principle of the airflow generator were introduced.The theoretical analysis and experimental tests were carried out to study the influence of the bluff body structure on its performance.Therefore, the principle feasibility of the composite bluff-body piezoelectric airflow generator using axial longitudinal vibration mode was proved.The results show that the average drag increases quadratically with the increasing of flow velocity and bluff-body diameter ratio.The average drag factor increases with the increasing diameter ratio until it reaches a steady-state value of 5.34 finally.For the piezoelectric airflow generator with the flexible bluff body, both diameter ratio and the thickness of bluff body have great influence on the output voltage.There are optimal diameter ratio (α=0.953) and optimal thickness range (0.1 mm<C<0.3 mm) of bluff body to maximize the output voltage.At the high flow velocity, the output voltage of generators with Type-A and Type-B bluff body is higher than that of generator with Type-C bluff body.For the generator with Type-B bluff body, the diameter ratio of rigid body to flexible body has significant influence on the output voltage.There is an optimal rigid-flexible diameter ratio (γ=0.429, γ=0.929) to maximize the output voltage.

Key words

piezoelectric / self-powered / generator / fluid / self-excitation

Cite this article

Download Citations
LIANG Cheng1,2,KAN Junwu1,2,ZHANG Zhonghua1,2,WANG Shuyun1,2,HUANG Xin1,2,FU Jiawei1,2. The influence of bluff body structure on the performance of a piezoelectric airflow generator using axial longitudinal vibration mode[J]. Journal of Vibration and Shock, 2021, 40(2): 9-14

References

[1] 阚君武, 于丽, 王淑云, et al. 旋磁激励式圆形压电振子发电机[J]. 振动与冲击, 2015, 34(2):114-118.
Kan Junwu, Yu Li, Wang Shuyun, et al. Rotary magnetic excitation circular piezoelectric vibrator generator [J]. Journal of Vibration and Shock, 2015, 34(2):114-118.
[2] 宋汝君, 单小彪, 杨先海, et al. 基于压电俘能器的流体能量俘获技术研究现状[J]. 振动与冲击, 2019, 38(17):244-250.
Song Rujun, Shan Xiaobiao, Yang xianhai, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters[J]. Vibration and Impact, 2019, 38(17):244-250.
[3] 徐振龙, 单小彪, 谢涛. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击, 2018, 37(8): 190-199.
Xu zhenlong, Shan Xiaobiao, Xie Tao. A review of broadband piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2018, 37(8): 190-199.
[4] Wu Y, Qiu J, Zhou S, et al. A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting[J]. Applied energy, 2018, 231: 600-614.
[5] Tao J X, Viet N V, Carpinteri A, et al. Energy harvesting from wind by a piezoelectric harvester[J]. Engineering Structures, 2017, 133: 74-80.
[6] Zhou M, Chen Q, Xu Z, et al. Piezoelectric wind energy harvesting device based on the inverted cantilever beam with leaf-inspired extensions[J]. AIP Advances, 2019, 9(3): 035213.
[7] 王淑云,沈亚林,阚君武,汪彬,张忠华,严梦加,方江海.刚柔复合梁压电风能采集器的试验测试与分析[J].振动与冲击,2016,35(18):23-27.
Wang Shuyun, Shen Yalin, Kan Junwu, et al. Test and analysis of piezoelectric wind energy harvester based on rigid-flexible composite beam[J]. Journal of Vibration and Shock, 2016, 2016(18): 4.
[8] Xiao Q , Zhu Q . A review on flow energy harvesters based on flapping foils[J]. Journal of Fluids and Structures, 2014, 46:174-191.
[9] Nguyen H D T , Pham H T , Wang D A . A miniature pneumatic energy generator using Kármán vortex street[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116:40–48.
[10] Zhao L, Yang Y. Toward small-scale wind energy harvesting: design, enhancement, performance comparison, and applicability[J]. Shock and Vibration, 2017, 2017.
[11] Zhang L B, Abdelkefi A, Dai H L, et al. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations[J]. Journal of Sound and Vibration, 2017, 408: 210-219.
[12] Wu N, Wang Q, Xie X D. Ocean wave energy harvesting with a piezoelectric coupled buoy structure[J]. Applied Ocean Research, 2015, 50:110-118.
[13] Xie X D , Wang Q , Wu N . Energy harvesting from transverse ocean waves by a piezoelectric plate[J]. International Journal of Engineering Science, 2014, 81:41-48.
[14] Luong H T , Goo N S . Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill[J]. Smart Materials and Structures, 2012, 21(2):025017.
[15] Yang Y , Shen Q , Jin J , et al. Rotational piezoelectric wind energy harvesting using impact-induced resonance[J]. Applied Physics Letters, 2014, 105(5):053901.
[16] Kan J , Fan C , Wang S , et al. Study on a piezo-windmill for energy harvesting[J]. Renewable Energy, 2016, 97:210-217.
[17] Song R , Shan X , Lv F , et al. A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension[J]. Ceramics International, 2015, 41:S768-S773.
[18] .Dai H L , Abdelkefi A , Yang Y , et al. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations[J]. Applied Physics Letters, 2016, 108(5):053902.
[19] Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with Y-shaped attachments[J]. Energy conversion and management, 2019, 181: 645-652.
[20] Blevins R D. Flow-induced vibration[M]. New York, Van Nostrand Reinhold Co., 1977. 377 p., 1977.
PDF(1405 KB)

339

Accesses

0

Citation

Detail

Sections
Recommended

/