Analysis of evolution of meshing parameters of hypoid gear drive under changing loads

WANG Xiaole,LU Jianwei,YANG Shiqin,GU Xianguang

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (20) : 143-149.

PDF(2539 KB)
PDF(2539 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (20) : 143-149.

Analysis of evolution of meshing parameters of hypoid gear drive under changing loads

  • WANG Xiaole1,LU Jianwei2,YANG Shiqin3,GU Xianguang2
Author information +
History +

Abstract

Loaded tooth contact analysis of a hypoid gear drive under different loads was implemented.The loaded transmission error, equivalent meshing force, comprehensive elastic deformation, time-varying meshing stiffness and actual contact ratio were obtained.The contact patterns obtained by LTCA were compared with those obtained by a loaded rolling test.The influence of the load amplitude on the meshing parameters was analyzed.Results show that the effects of the variation of the load on the meshing force, transmission error (TE), meshing stiffness and contact ratio are significant.The TE curve and meshing stiffness curve show obvious asymmetric characteristics with the increase of the load.Under low load, the actual contact ratio increases significantly with the increase of the load, while the change tends to be flat after the load reached a certain amplitude.The obtained time-varying meshing parameters can accurately reflect the meshing features of the hypoid gear drive on different loads, and provide a support for analyzing the dynamic meshing characteristics and dynamics behavior of the hypoid gear system.

Key words

hypoid gear drive / load variation / loaded tooth contact analysis / meshing parameters / evolution analysis

Cite this article

Download Citations
WANG Xiaole,LU Jianwei,YANG Shiqin,GU Xianguang. Analysis of evolution of meshing parameters of hypoid gear drive under changing loads[J]. Journal of Vibration and Shock, 2021, 40(20): 143-149

References

[1]魏莎, 韩勤锴, 褚福磊.考虑不确定性因素的齿轮系统动力学研究综述[J].机械工程学报, 2016, 52(1): 1-19.
WEI Sha, HAN Qinkai, CHU Fulei.Review on research of uncertain dynamics for gear system[J].Journal of Mechanical Engineering, 2016,52(1): 1-19.
[2]苏进展, 方宗德, 贺朝霞.基于啮合特性的弧齿锥齿轮动力学研究[J].机械科学与技术, 2016,35(1): 50-55.
SU Jinzhan, FANG Zongde, HE Zhaoxia.Study on dynamic of spiral bevel gears based on meshing characteristics[J].Mechanical Science and Technology for Aerospace Engineering, 2016,35(1): 50-55.
[3]MU Yanming.Impact analysis and vibration reduction design of spiral bevel gears[J].Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019,233(3): 668-676.
[4]YANG J J, SHI Z H, ZHANG H, et al.Dynamic analysis of spiral bevel and hypoid gears with high-order transmission errors[J].Journal of Sound and Vibration, 2018,417: 149-164.
[5]KOLIVAND M, STEYER G, KRIEGER C.A study on hypoid gears NVH robustness[J].SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2017,1(2): 417-427.
[6]周欣, 邓康耀, 田中旭,等.渐开线齿轮传动的扭转刚度研究[J].机械传动, 2017,41(6): 46-51.
ZHOU Xin, DENG Kangyao, TIAN Zhongxu, et al.Research of the torsion stiffness of involute gear transmission[J].Journal of Mechanical Transmission, 2017,41(6): 46-51.
[7]杨长辉, 徐涛金, 许洪斌, 等.基于Weber能量法的直齿轮时变啮合刚度数值计算[J].机械传动, 2015,39(2): 59-62.
YANG Changhui, XU Taojin, XU Hongbin, et al.Numerical calculation of time-varying meshing stiffness of spur gear based on Weber energy method[J].Journal of Mechanical Transmission, 2015,39(2): 59-62.
[8]KUANG J H, YANG Y T.An estimate of mesh stiffness and load sharing ratio of a spur gear pair[C]∥Proceedings of the ASME Journal of 12th International Power Transmission and Gearing Conference.Saottsdale: Arizona, 1992.
[9]RAPTIS K G, SAVAIDIS A A.Experimental investigation of spur gear strength using photoelasticity[J].Procedia Structural Integrity, 2018,10: 33-40.
[10]GOSSELIN C, GAGNON P, CLOUTIER L.Accurate tooth stiffness of spiral bevel gear teeth by the finite strip method[J].ASME Journal of Mechanical Design, 1998,120: 599-605.
[11]VIJAYAKAR S.A combined surface integral and finite element solution for a three-dimensional contact problem[J].International Journal for Numerical Methods in Engineering, 1991,31: 525-545.
[12]唐进元, 蒲太平.基于有限元法的螺旋锥齿轮啮合刚度计算[J].机械工程学报, 2011,47(11): 23-29.
TANG Jinyuan, PU Taiping.Spiral bevel gear meshing stiffness calculations based on the finite element method[J].Journal of Mechanical Engineering, 2011,47(11): 23-29.
[13]周驰, 田程, 丁炜琦, 等.基于有限元法的准双曲面齿轮时变啮合特性研究[J].机械工程学报, 2016,52(15): 36-43.
ZHOU Chi, TIAN Cheng, DING Weiqi, et al.Analysis of hypoid gear time-varying mesh characteristics based on the finite element method[J].Journal of Mechanical Engineering, 2016,52(15): 36-43.
[14]刘程, 史文库, 陈志勇, 等.汽车驱动桥准双曲面齿轮时变啮合刚度计算[J].振动与冲击, 2017,36(20): 240-247.
LIU Cheng, SHI Wenku, CHEN Zhiyong, et al.A calculation method for the hypoid time varying stiffness of the automobile drive axle[J].Journal of Vibration and Shock, 2017,36(20): 240-247.
PDF(2539 KB)

403

Accesses

0

Citation

Detail

Sections
Recommended

/