Free vibration characteristics analysis of orthotropic sound source plates

WANG Jiufa

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (22) : 216-220.

PDF(752 KB)
PDF(752 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (22) : 216-220.

Free vibration characteristics analysis of orthotropic sound source plates

  • WANG Jiufa
Author information +
History +

Abstract

Base on Mindlin plate theory, the vibration model of orthotropic sound source plates is established. and the vibration displacement and the cross-sectional rotations of the mid-plane are sought as the linear combination of a double Fourier cosine series and auxiliary series functions through improved Fourier series method, the use of these supplementary series is to solve the discontinuity problems which encountered in the displacement partial differentials along the edges. Then the vibration matrix equation of orthotropic sound source plates, the vibration characteristics can be obtained by solving the general matrix equation. Finally, the convergence performance of the method in this paper is studied, and the vibration characteristics of the plates under classical boundary conditions are calculated. The accuracy of the method is verified by comparison with the results of the available literature. The influence of boundary conditions is analyzed, which provides support for the optimal design of the sound generator.

Key words

orthotropic material / sound source plate / improved Fourier series / elastic boundary support

Cite this article

Download Citations
WANG Jiufa. Free vibration characteristics analysis of orthotropic sound source plates[J]. Journal of Vibration and Shock, 2021, 40(22): 216-220

References

[1] D. J. Gorman. Accurate free vibration analysis of clamped orthotropic plate by the method of superposition [J]. Journal of sound and vibration, 1990, 140(3):391-411.
[2] S. Hurlebaus, L. Gaul, J. T. S. Wang. An exact series solution for calculating the eigenfrequencies of orthotropic plates with completely free boundary [J]. Journal of Sound and Vibration, 2001, 244(5):747-759.
[3] Y. F. Xing, B. Liu. New exact solutions for free vibrations of thin orthotropic rectangular plates [J]. Composite Structures, 2009, 89(4):567-574.
[4] Y. F. Xing, T. F. Xu. Solution methods of exact solutions for free vibration of rectangular orthotropic thin plates with classical boundary conditions [J]. Composite Structures, 2013, 104:187-195.
[5] A.A.Jafari, S.A.Eftekhari. An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates [J]. Applied Mathematics and Computation, 2011, 218(6):2670-2692.
[6] K. M. Liew. Solving the vibration of thick symmetric laminates by reissner/ Minldin plate theory and the P- Ritz method [J]. Journal of sound and vibration, 1996, 198(3):343-360.
[7] B. Liu , Y. F. Xing. New exact solutions for free vibrations of orthotropic rectangular Mindlin plates [J]. Composite structures, 2011, 93(7):1664-1672.
[8] 王春玲,张杰,李华. 四边自由各向异性矩形中厚板弯曲解析解[J]. 计算力学学报, 2018, 35(4):521-526.
C. L. Wang, J. Zhang, H. Li. Analytic solutions for bending of anisotropic rectangular medium-thickness plate with four free edges[J]. Chinese Journal of Computational Mechanics, 2018, 35(4):521-526. (In Chinese)
[9] M. R. Bahrami, S. Hatami. Free and forced transverse vibration analysis of moderately thick orthotropic plates using spectral finite element method [J]. Jounral of Solid Mechanics, 2016, 8(4):895-915.
[10] Chen Wanji, Ren Hefei. Free vibration analysis of a laminated composite mindlin plate based on new modified couple stress theory[J]. Engineering Mechanics, 2016, 33(12):31-37.
[11] Hamidreza Rostami. Vibration of the rotating rectangular orthotropic Mindlin plates with an arbitrary stagger angle [J]. Journal of Vibration and Control, 2019, 25(6):1194-1209.
[12] W. L. Li. Free vibrations of beams with general boundary conditions [J]. Journal of Sound and Vibration, 2000, 237(4):709-725.
[13] W. L. Li. Vibration analysis of rectangular plates with general elastic boundary supports [J]. Journal of Sound and Vibration,2004,273(3):619-635.
[14] W. L. Li, X. F. Zhang, J. T. Du. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports [J]. Journal of Sound and Vibration, 2009,321(1-2):254-269.
[15] J. T. Du, W. L. Li, T. J. Yang, et al. Vibration analysis of moderately thick rectangular plates with elastically restrained edges [J]. Journal of Sound and Vibration, 2012,131(4):254-269.
[16] H. Zhang, D. Y. Shi, Q. S. Wang. An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non-uniform boundary conditions [J]. International Journal of Mechanical Sciences, 2017,121:1-20.
[17] 鲍四元, 沈峰. 各向异性矩形板和环扇形板横向自由振动的一种通用解法[J]. 固体力学学报, 2019,40(6):560-570.
S. Y. Bao, F. Shen. A Generalized Solution Procedure for Free Transverse Vibration of Anisotropic Rectangular Plates and Annular Sectorial Plates[J]. Chinese Journal of Solid Mechanics, 2019,40(6):560-570.
[18] A. K. Ghosh, S. S. Dey. Free vibration of laminated composite plates-a simple finite element based on higher order theory [J]. Computers and Structures, 1994, 52(3):397-404.
[19] 邹志庆,沈大荣.不同边界条件正交各向异性中厚板的振动与稳定分析[J]. 应用力学学报, 1992,9(2):143-148.
D. C. Shi, Y. Z. Chen. A new numerical procedure for evaluating buckling load of bars considering shear effect[J]. Chinese Journal of Applied Mechanics,  1992,9(2):143-148.
PDF(752 KB)

323

Accesses

0

Citation

Detail

Sections
Recommended

/