Diamond grid braced frames structure(DBF) is a new type of lateral force support structure, which has greater stiffness, bearing capacity and ductility under the condition of ensuring the safety of side columns. Meanwhile, compared with the traditional support system, it greatly reduces the thickness of the supporting surface, which facilitates the combination of the steel structure housing support structure and the peripheral protection. Diamond grid braced frames is proposed in this paper the lateral stiffness of the supporting frame structure and the lateral bearing capacity formula, at the same time, based on the principle of conservation of energy, put forward the diamond mesh support frame structure seismic design method based on performance, considering the negative impact of the support of beam-column through primary yield mechanism for plastic design method of yield components, the capacity design method for the yield components. This method is used to design a 12-storey Diamond grid braced frame structure, and the correctness of the method is verified by comparing the dynamic time history analysis with the traditional cross support frame structure, which provides a reference for the engineering design of Diamond grid braced frame structure.
Key words
performance-based plastic design(PBPD)method /
braced frame /
target drift /
global failure model /
design method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 郝际平, 薛 强,郭 亮, 孙晓岭. 装配式多、高层钢结构住宅建筑体系研究与进展[J]. 中国建筑金属结构, 2020(03): 27-34.
Hao Jiping, Xue Qiang, Guo Liang, sun Xiaoling. Research and development of prefabricated multi and high rise steel structure residential building system[J]. China building metal structure, 2020 (03): 27-34. (in Chinese)
[2] 王 琼, 王 喆, 王 力, 李利民. 国内多高层钢结构住宅的发展现状[J]. 中国住宅设施, 2015(04): 18-23.
Wang Qiong, Wang Zhe, Wang Li, Li Limin. Development status of domestic multi-storey and high-rise steel structure housing[J]. China housing facilities, 2015 (04): 18-23. (in Chinese)
[3] 连 鸣. Y形高强钢组合偏心支撑框架结构抗震性能及设计方法研究[D]. 西安建筑科技大学, 2016.
[4] 赵西安. 高层建筑结构实用设计方法(六)—高层建筑结构分析的计算机方法[J]. 建筑科学, 1988(06): 68-74.
Zhao Xian. Practical design method of high-rise building structure (6) -- computer method of high-rise building structure analysis[J]. Architectural science, 1988 (06): 68-74. (in Chinese)
[5] Bayat M R. Performance-based plastic design of earthquake resistant steel structures: Concentrically braced frames, tall moment frames, plate shear wall frames[J]. 2011.
[6] 叶小峰. 低屈服点圆钢管中心支撑钢框架结构抗震性能研究[D]. 江苏科技大学, 2017.
[7] Leelataviwat S, Goel S C, Stojadinovic B. Drift and yield mechanism based seismic design and upgrading of steel moment frames[M]. Michigan:University of Michigan, 1998.
[8] Akiyama H. Earthquake resistant design based on the energy concept[C]// 9th World Conference on Earthquake Engineering. WCEE,1988: 905-910.
[9] 童根树, 罗桂发, 张 磊. 横梁未加强型人字撑框架体系的抗侧性能[J]. 工程力学, 2011, 28(08): 89-98.
Tong Genshu, Luo Guifa, Zhang Lei. Lateral behavior of beam unreinforced herringbone braced frame system [J]. Engineering mechanics, 2011,28 (08): 89-98.(in Chinese)
[10] Lee S S, Goel S C, Chao S H. Performance-based seismic design of steel moment frames using target drift and yield mechanism[C]//Proceedings of the 13th world conference on earthquake engineering, Vancouver, Canada. 2004.
[11] 熊二刚, 张 倩. 中心支撑钢框架结构基于性能的塑性抗震设计[J]. 振动与冲击, 2013, 32(19): 32-38.
Xiong Ergang, Zhang Qian. Performance-based plastic design method for steel concentrically braced frames[J]. Journal of vibration and shock, 2013, 32 (19): 32-38. (in Chinese)
[12] 连 鸣, 苏明周, 李 慎. Y形高强钢组合偏心支撑框架结构基于性能的塑性设计方法研究[J]. 工程力学, 2017, 34(05): 148-162.
Lian Ming, Su Mingzhou, Li Shen. Research on performance-based plastic design method of Y-Type high strength steel composite eccentrically braced frame[J]. Engineering mechanics, 2017, 34(05): 148-162. (in Chinese)
[13] 樊春雷. 钢框架—钢板剪力墙结构基于性能的抗震设计研究[D]. 西安建筑科技大学, 2014.
[14] 樊春雷, 郝际平, 田炜烽. 薄钢板剪力墙结构试验研究及简化模型分析[J]. 工程力学, 2016, 33(06): 34-45.
Fan Chunlei, Hao Jiping, Tian Weifeng. Experimental study and simplified model analysis of thin steel plate shear wall structure [J]. Engineering mechanics, 2016, 33 (06): 34-45.(in Chinese)
[15] GB 50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[16] GB 50009-2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.
[17] Tsai K C, Li C H, Lin C H, et al. Cyclic tests of four two‐story narrow steel plate shear walls—Part 1: Analytical studies and specimen design[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(7): 775-799.
[18] Li C H, Tsai K C, Lin C H, et al. Cyclic tests of four two‐story narrow steel plate shear walls. Part 2: experimental results and design implications[J]. Earthquake engineering & structural dynamics, 2010, 39(7): 801-826.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}