Stochastic resonance characteristics analysis of an asymmetric tri-stable system under α-stable distributed noise

ZHANG Gang, XIE Pan, ZHANG Tianqi

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (3) : 109-115.

PDF(1695 KB)
PDF(1695 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (3) : 109-115.

Stochastic resonance characteristics analysis of an asymmetric tri-stable system under α-stable distributed noise

  • ZHANG Gang, XIE Pan, ZHANG Tianqi
Author information +
History +

Abstract

Here, aiming at the asymmetry of a system in practical engineering applications, an asymmetric tri-stable system combined with α-stable distributed noise was proposed, and the average signal-to-noise ratio improvement was taken as the performance index. Then, influence laws of the system parameters a, b, system asymmetric skewness r and noise intensity amplification factor D on the stochastic resonant output of the asymmetric tri-stable system with changes of the characteristic index α of α-stable distributed noise and the symmetry parameter β were explored. The study results showed that under α-stable distributed noise environment, appropriately adjusting the system structure parameters a, b and skewness r can induce stochastic resonance to realize the weak signal detection, and intervals with better performance do not change with variation of α or β; when sudying noise-induced stochastic resonance phenomena, adjusting the noise intensity amplification factor D can also induce stochastic resonance, and D-intervals with better resonance effect does not change with variation of α or β; these conclusions provide a theoretical basis for reasonable selection of parameters in resonance of asymmetric tri-stable system under α-stable distributed noise.

Key words

α-stable distributed noise / asymmetric tri-stable system / stochastic resonance / average signal-to-noise ratio improvement

Cite this article

Download Citations
ZHANG Gang, XIE Pan, ZHANG Tianqi. Stochastic resonance characteristics analysis of an asymmetric tri-stable system under α-stable distributed noise[J]. Journal of Vibration and Shock, 2021, 40(3): 109-115

References

[1] BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A, 1981, 14(11): 453-457.
[2] BENZI R, PARISI G, SUTERA A, et al. Stochastic resonance in climatic change[J]. Tellus, 1982, 34(1): 10-16.
[3] BENZI R, PARISI G, SUTERA A, et al. A theory of stochastic resonance in climatic change[J]. SIAM Journal on Applied Mathematics, 1983, 43(3): 565-578.
[4] 刘进军, 冷永刚, 赖志慧, 等. 基于频域信息交换的随机共振研究[J]. 物理学报, 2016, 65(22): 197-210.
LIU Jin-jun, LENG Yong-gang, LAI Zhi-hui, et al. Stochastic resonance based on frequency information exchange[J]. Acta Physica Sinica, 2016, 65(22): 197-210.
[5] 田艳, 何桂添, 罗懋康. 具有非线性阻尼涨落的线性谐振子的随机共振[J]. 物理学报, 2016, 65(06): 35-44.
TIAN Yan, HE Gui-tian, LUO Mao-kang. Stochastic resonance of a linear harmonic oscillator with non-linear damping fluctuation[J]. Acta Physica Sinica, 2016, 65(06): 35-44.
[6] 陆思良. 基于随机共振的微弱信号检测模型及应用研究[D]. 中国科学技术大学, 2015.
LU Si-liang. Models and applications of stochastic resonance-based weak signal detection[D]. University of Science and Technology of China, 2015.
[7] 陆思良, 苏云升, 赵吉文, 等. 基于二维互补随机共振的轴承故障诊断方法研究[J]. 振动与冲击, 2018, 37(04): 7-12+27.
LU Si-liang, SU Yun-sheng, ZHAO Ji-wen, et al. Bearings fault diagnosis based on two-dimensional complementary stochastic resonance[J]. Journal of Vibration and Shock, 2018, 37(04): 7-12+27.
[8] GAO Z B, LIU X Z, ZHENG N. Study on the method of chaotic oscillator in weak signal detection[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2013, 25(04): 440-444+454.
[9] 谯自健. 基于随机共振理论的微弱信号检测方法研究及应用[D]. 兰州理工大学, 2015.
QIAO Zi-jian. The research and application of weak signal detection based on stochastic resonance[D]. Lanzhou University of Technology, 2015.
[10] 潘峥嵘, 谯自健, 张宁. 基于符号序列熵的自适应随机共振的微弱信号检测[J]. 计量学报, 2015, 36(05): 496-500.
PAN Zheng-rong, QIAO Zi-jian, ZHANG Ning. Weak signal detection of adaptive stochastic resonance based on Shannon entropy of symbolic series[J]. Acta Metrologica Sinica, 2015, 36(05): 496-500.
[11] XU B, DUAN F, BAO R, et al. Stochastic resonance with tuning system parameters: the application of bistable systems in signal processing[J]. Chaos, Solitons and Fractals, 2002, 13(4): 633-644.
[12] 焦尚彬, 任超, 黄伟超, 等. α稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象[J]. 物理学报, 2013, 62(21): 34-43.
JIAO Shang-bin, REN Chao, HUANG Wei-chao, et al. Parameter-induced stochastic resonance in multi-frequency weak signal detection with α stable noise[J]. Acta Physica Sinica, 2013, 62(21): 34-43.
[13] GAMMAITONI L, BULSARA A R. Noise activated nonlinear dynamic sensors[J]. Physical Review Letters, 2002, 88(23): 230-601.
[14] 张静静, 靳艳飞. 非高斯噪声驱动下非对称双稳系统的平均首次穿越时间与随机共振研究[J]. 物理学报, 2011, 60(12): 54-62.
ZHANG Jing-jing, JIN Yan-fei. Mean first-passage time and stochastic resonance in an asymmetric bistable system driven by non-Gaussian noise[J]. Acta Physica Sinica, 2011, 60(12): 54-62.
[15] 孙中奎, 鲁捧菊, 徐伟. 非对称双稳耦合网络系统的尺度随机共振研究[J]. 物理学报, 2014, 63(22): 92-99.
SUN Zhong-kui, LU Peng-ju, XU Wei. System size stochastic resonance in asymmetric bistable coupled network systems[J]. Acta Physica Sinica, 2014, 63(22): 92-99.
[16] ZHANG G, ZHANG Y J, ZHANG T Q, et al. Stochastic resonance in an asymmetric bistable system driven by multiplicative and additive Gaussian noise and its application in bearing fault detection[J]. Chinese Journal of Physics, 2018, 56(3): 1173-1186.
[17] 张晓燕, 徐伟, 周丙常. 周期矩形信号作用下时滞非对称单稳系统的随机共振[J]. 物理学报, 2012, 61(03): 47-51.
ZHANG Xiao-yan, XU Wei, ZHOU Bing-chang. Stochastic resonance in a time-delayed asymmetric mono-stable system
modulated by periodic rectangular signal[J]. Acta Physica Sinica, 2012, 61(03): 47-51.
[18] SHI P M, LI P, AN S J, et al. Stochastic resonance in a multistable system driven by Gaussian noise[J]. Discrete Dynamics in Nature and Society, 2016, 2016(2): 1-7.
[19] SHI P M, AN S J, LI P, et al. Signal feature extraction based on cascaded multi-stable stochastic resonance denoising and EMD method[J]. Measurement, 2016, 90(8): 318-328.
[20] 邱天爽, 张旭秀, 李小兵, 等. 统计信号处理—非高斯信号处理及其应用[M]. 北京: 电子工业出版社, 2004, 第140页.
QIU Tian-shuang, ZHANG Xu-xiu, LI Xiao-bing, et al. Statistical signal processing—non-Gaussian signal processing and its application[M]. Beijing: Publishing House of Electronics Industry, 2004, p140.
[21] 焦尚彬, 孙迪, 刘丁, 等. α稳定噪声下一类周期势系统的振动共振[J]. 物理学报, 2017, 66(10): 26-36.
JIAO Shang-bin, SUN Di, LIU Ding, et al. Vibrational resonance in a periodic potential system with α stable noise[J]. Acta Physica Sinica, 2017, 66(10): 26-36.
[22] LIU Y L, LIANG J, JIAO S B, et al. Stochastic resonance of a tri-stable system with α stable noise[J]. Chinese Journal of Physics, 2017, 55(2): 355-366.
[23] 焦尚彬, 杨蓉, 张青, 等. α稳定噪声驱动的非对称双稳随机共振现象[J]. 物理学报, 2015, 64(02): 49-57.
JIAO Shang-bin, YANG Rong, ZHANG Qing, et al. Stochastic resonance of asymmetric bistable system with α stable noise[J]. Acta Physica Sinica, 2015, 64(02): 49-57.
[24] 焦尚彬, 李佳, 张青, 等. α稳定噪声下时滞非对称单稳系统的随机共振[J]. 系统仿真学报, 2016, 28(01): 139-146+153.
JIAO Shang-bin, LI Jia, ZHANG Qing. et al. Stochastic resonance in time-delayed asymmetric monostable system with α stable noise[J]. Journal of System Simulation, 2016, 28(01): 139-146+153.
[25] DOIRON B, LINDNER B, LONGTIN A, et al. Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus[J]. Physical Review Letters, 2004, 93(4): 048-101.
[26] 赖志慧, 冷永刚. 三稳系统的动态响应及随机共振[J]. 物理学报, 2015, 64(20): 81-92.
LAI Zhi-hui, LENG Yong-gang. Dynamic response and stochastic resonance of a tri-stable system[J]. Acta Physica Sinica, 2015, 64(20): 81-92.
[27] J.P N. An algorithm for evaluating stable densities in Zolotarev's (M) parameterization[J]. Mathematical and Computer Modelling, 1999, 29(10): 229-233.
[28] 张广丽, 吕希路, 康艳梅. α稳定噪声环境下过阻尼系统中的参数诱导随机共振现象[J]. 物理学报, 2012, 61(04): 1-8.
ZHANG Guang-li, LÜ Xi-lu, KANG Yan-mei. Parameter-induced stochastic resonance in overdamped system with α stable noise[J]. Acta Physica Sinica, 2012, 61(04): 1-8.
[29] RAFAL W. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables[J]. Statistics and Probability Letters,1996,28(2): 165-171.
[30] 张文英, 王自力, 张卫东. 利用随机共振实现Lévy噪声中的信号检测[J]. 控制工程, 2009, 16(05): 638-640.
ZHANG Wen-ying, WANG Zi-li, ZHANG Wei-dong. Signal detection from lévy noise via stochastic resonance[J]. Control Engineering of China, 2009, 16(05): 638-640.
[31] DAVIS J C, MCCULLAGH M J. Display and Analysis of Spatial Data: NATO Advanced Study Institute[J]. Journal of the American Statistical Association, 1976, 71(355): 768-769.
[32] 胡莺庆. 随机共振微弱特征信号检测理论与方法[M]. 北京: 国防工业出版社, 2012.
HU Niao-qing. Theory and method of detection weak characteristic signal of stochastic resonance[M]. Beijing: National Defense Industry Press, 2012.
[33] 万频, 詹宜巨, 李学聪, 等. 一种单稳随机共振系统信噪比增益的数值研究[J]. 物理学报, 2011, 60(04): 60-66.
WAN Pin, ZHAN Yi-ju, LI Xue-cong, et al. Numerical research of signal-to-noise ratio gain on a monostable stochastic resonance[J]. Acta Physica Sinica, 2011, 60(04): 60-66.
PDF(1695 KB)

360

Accesses

0

Citation

Detail

Sections
Recommended

/