Equivalent static wind load in torsional direction of long cross arm transmission tower

YANG Ziye, DENG Hongzhou

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (3) : 125-132.

PDF(2833 KB)
PDF(2833 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (3) : 125-132.

Equivalent static wind load in torsional direction of long cross arm transmission tower

  • YANG Ziye, DENG Hongzhou
Author information +
History +

Abstract

To investigate the calculation method of equivalent static wind load (ESWL) in torsional direction of long cross arm transmission tower, its multi-DOF torsional vibration equations were derived and solved in frequency domain based on the spring-multi-mass point model. Considering the contribution of the first order torsional mode, the calculation formulas of ESWL in torsional direction were deduced with the inertial wind load (IWL) method. Based on the downwind shape coefficient of tower structure and the quasi-steady theory, the torsional wind load spectrum of tower segment was deduced. Secondly, according to the special geometric configuration and dynamic characteristics of DC transmission tower, a simplified model was proposed to simplify vibration equation and the calculation formula of wind load spectrum. Finally, taking the Zhundong-East China ±1 100 kV angle steel transmission tower as an example, the calculation results for axial force and dynamic time history analysis of main materials, inclined ones and diaphragm ones of the transmission tower obtained using the proposed method were compared with those obtained using the method of our country code. The results showed that compared with the method of our country code, the proposed method can improve the design reliabilities of main materials, inclined ones and diaphragm ones, especially, the reliabilities of the tower body’s inclined materials and diaphragm ones increase greatly, they can reach 98.5% and 89.8%, respectively.

Key words

long cross arm transmission tower / equivalent static wind load (ESWL) / torsional effect / inertial wind load (IWL) method

Cite this article

Download Citations
YANG Ziye, DENG Hongzhou. Equivalent static wind load in torsional direction of long cross arm transmission tower[J]. Journal of Vibration and Shock, 2021, 40(3): 125-132

References

[1] 楼文娟,段志勇,金晓华,等.风速水平空间相关性对长横担输电塔风效应的影响[J].振动与冲击,2014,33(13):63-66.
LOU Wen-juan, DUAN Zhi-yong, JIN Xiao-hua, et al. Influence of turbulent transverse space correlation on wind-induced responses of long cantilever transmission towers[J]. Journal of Vibration and Shock, 2014, 33(13):63-66.
[2] 聂建波,潘峰,沈建国,等.±800kV特高压T型长横担输电塔风振特性研究[J].特种结构,2013,30(01):48-52.
NIE Jian-bo, PAN Feng, SHEN Jian-guo, et al. Wind-induced Vibration research on ±800kV UHV T-long cross arm transmission tower[J]. Special Structure, 2013,30(01):48-52.
[3] 赵建,叶震,余亮,等.±1100kV特高压长悬臂输电铁塔风振特性研究[J].工业建筑,2019,49(04):8-14.
ZHAO Jian, YE Zhen, YU Liang, et al. Wind-induced Dynamic Response and Vibration Coefficient of ±1100 Kilovolt DC UHV Transmission Tower with Long Cantilever[J]. Industrial Construction, 2019,49(04):8-14.
[4] 张骞,叶震,蔡建国,等.特高压长悬臂输电塔与输电塔-线耦合体系的风振特性[J].东南大学学报(自然科学版),2019,49(01):1-8.
ZHANG Qian, YE Zhen, CAI Jian-guo, et al. Wind-induced response of UHV long cantilever transmission tower and tower-line coupled system [J]. Journal of Southeast University (Natural Science Edition), 2019,49(01):1-8.
[5] 张爽,孙清,吴彤,等.±1100kV输电塔风振响应及风振系数研究[J].特种结构,2018,35(04):52-59.
ZHANG Shuang, SUN Qing, WU Tong, et al. Research on Wind-induced Response Analysis and Vibration Coefficient of ±1100kV Transmission Tower[J]. Special Structures, 2018, 35 (04):52-59.
[6] 楼文娟, 蒋莹, 金晓华,等. 台风风场下角钢塔风振特性风洞试验研究[J]. 振动工程学报, 2013, 26(2):207-213.
LOU Wen-juan, JIANG Ying, JIN Xiao-hua, et al. Wind tunnel test research on wind-induced vibration characteristics of angle steel tower in typhoon field[J]. Journal of Vibration Engineering, 2013, 26(2):207-213.
[7] 楼文娟, 姜雄, 夏亮,等. 长横担输电塔风致薄弱部位及加强措施[J]. 浙江大学学报(工学版), 2013, 47(10): 1798- 1804.
LOU Wen-juan, JIANG Xiong, XIA Liang, et al. Wind-induced weak parts and reinforcement methods of long cross-armed transmission tower[J]. Journal of Zhejiang University (Engineering Science),2013,47(10):1798-1804.
[8] 梁枢果,瞿伟廉,李桂青.高层建筑横风向与扭转风振力计算[J].土木工程学报,1991(04):65-73.
LIANG Shu-guo, QU Wei-lian, Li Gui-qing. An Evaluation of Dynamic Loads in Across-wind Direction and Torsion on Tall Buildings[J].China Civil Engineering Journal, 1991(04):65-73.
[9] Liang S , Li Q S , Liu S , et al. Torsional dynamic wind loads on rectangular tall buildings[J]. Engineering Structures, 2004, 26(1):129-137.
[10] 邹良浩,梁枢果,李辉民.矩形高层建筑扭转向风振响应简化计算[J].沈阳建筑大学学报(自然科学版),2008(03):375- 379.
ZOU Liang-hao, LIANG Shu-guo, LI Hui-min. Simplified Evaluation of Torsional Dynamic Responses of Rectangular Tall Buildings[J]. Journal of Shenyang Jianzhu University (Natural Science), 2008(03):375- 379.
[11] 叶丰. 高层建筑顺、横风向和扭转方向风致响应及静力等效风荷载研究[D]. 同济大学.
YE Feng. Research on Along-wind, Across-wind and Torsional Wind-induced Responses and Equivalent Static Wind Loads of Tall Buildings[D]. Tongji University.
[12] 梁枢果,邹良浩,赵林,等.格构式塔架动力风荷载解析模型[J].同济大学学报(自然科学版),2008(02):166-171.
LIANG Shu-guo, ZOU Liang-hao, ZHAO Lin, et al. Analytical Model of Dynamic Wind Loads on Lattice Towers[J]. Journal of Tongji University (Natural Science), 2008(02):166-171.
[13] 梁枢果,邹良浩,赵林,等.格构式塔架三维动力风荷载的风洞试验研究[J].空气动力学学报,2007(03):311-318.
LIANG Shu-guo, ZOU Liang-hao, ZHAO Lin, et al. The Investigation of 3-D Dynamic Wind Loads on Lattice Towers by Wind Tunnel Test[J]. Acta Aerodynamica Sinica, 2007(03): 311-318.
[14] 中华人民共和国国家标准GB5009-2012. 建筑结构荷载规范.北京:中国建筑工业出版社,2012.
[15] DL/T 5551-2018,架空输电线路荷载规范.北京:中国计划出版社, 2019.
[16] 张相庭.工程结构风荷载理论和抗风计算手册[M], 同济大学出版社, 1989年8月
[17] 张相庭.结构风压和风振计算[M], 同济大学出版社, 1985年5月
[18] 司瑞娟.特高压输电塔线体系风振响应及抗风设计参数研究[D].同济大学.
SI Rui-juan. Wind-induced vibration response and wind-resistant design parameters studies on UHV transmissioin tower-lines system[D]. Tongji University.
[19] 李永乐,王磊,向活跃,等.板桁梁抗扭惯性矩的计算方法[J].工程力学,2018,35(03):125-131.
LI Yong-le, WANG Lei, XIANG Huo-yue, et al. A Computational Method of Torsional Inertia for Plate Truss Girders[J]. Engineering Mechanics, 2018,35(03):125-131.
PDF(2833 KB)

Accesses

Citation

Detail

Sections
Recommended

/