Active control of nonlinear suspension with fractional order based on a differential geometry method

CHANG Yujian1,2, TIAN Wowo2, JIN Ge2, CHEN Enli1, LI Shaohua1

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (4) : 270-276.

PDF(3130 KB)
PDF(3130 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (4) : 270-276.

Active control of nonlinear suspension with fractional order based on a differential geometry method

  • CHANG Yujian1,2, TIAN Wowo2,  JIN Ge2,  CHEN Enli1,  LI Shaohua1
Author information +
History +

Abstract

Current research of active suspension is mainly based on the suspension system composed of linear spring and linear damping, but the actual suspension, such as hydro pneumatic suspension, air suspension and magnetorheological suspension, not only has nonlinear characteristics, but also has the characteristics of viscoelastic materials.Therefore, the suspension model with nonlinear stiffness and fractional damping can more accurately describe the dynamic performance of suspension.In this paper, a two-degree of freedom 1 / 4 vehicle model with cubic nonlinear stiffness and fractional damping was studied.The fractional differential in the suspension system was approximately calculated by the oustaloup filter algorithm.The active control of the suspension system was carried out by a PID controller and a LQR controller based on the feedback linearization of differential geometry theory.The results show that the active suspension based on the PID controller and the active suspension based on the feedback linearization LQR controller can effectively improve the comfort and stability of automobile suspension, and the effect of feedback linearization LQR active control is obviously better than PID control.

Key words

non-linear / fractional differential damping / Oustaloup filter algorithm / differential geometry method / LQR control

Cite this article

Download Citations
CHANG Yujian1,2, TIAN Wowo2, JIN Ge2, CHEN Enli1, LI Shaohua1. Active control of nonlinear suspension with fractional order based on a differential geometry method[J]. Journal of Vibration and Shock, 2021, 40(4): 270-276

References

[1] Oustaloup A, Moreau X. The CRONE suspension [J]. Control Engineering Practice, 1996, 4(08): 1101-1108.
[2] 金纯, 孙会来, 张文明, 等. 工程车辆油气悬架分数阶建模与特性分析[J]. 农业机械学报, 2014, 45(05): 16-21.
JIN Chun, SUN Hui-lai, ZHANG Wen-ming, et al. Fractional modeling and characteristic analysis of hydro-pneumatic suspension for construction vehicles [J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(05): 16-21.
[3] 孙会来, 金纯, 张文明, 等. 基于分数阶微积分的油气悬架建模与试验分析[J]. 振动与冲击, 2014, 33(17): 167-172.
SUN Hui-lai, JIN Chun , ZHANG Wen-ming, et al. Modeling and tests for a hydro-pneumatic suspension based on fractional calculus [J]. Journal of Vibration and Shock, 2014, 33(17): 167-172.
[4] 张军伟, 陈思忠, 李洪彪, 等. 基于分数阶的多支路油气悬架模型研究[J]. 汽车工程学报, 2015, 5(06): 408-414.
ZHANG Jun-wei, CHEN Si-zhong, LI Hong-biao, et al. Research on modeling of multi-branch hydropneumatic suspension based on fractional order [J]. Chinese Journal of Automotive Engineering, 2015, 5(06): 408-414.
[5] ZHANG Jun-wei, CHEN Si-zhong, ZHAO Yu-zhuang, et al. Research on modeling of hydropneumatic suspension based on fractional order [J]. Mathematical Problems in Engineering, 2015:1-11.
[6] WEN Shao-fang, SHEN Yong-jun, YANG Shao-pu. Dynamical analysis of Mathieu equation with two kinds of van der Pol fractional-order terms [J]. International Journal of Non-Linear Mechanics, 2016, 84: 130-138.
[7] 刘晓梅, 徐西鹏, 黄宜坚, 等. 一种磁流变阻尼器的分数阶微分模型[J]. 仪器仪表学报, 2009, 30(12): 2659-2663.
LIU Xiao-mei, XU Xi-peng, HUANG Yi-jian, et al. Fractional differential model of a type of magnetor heological damper [J], Chinese Journal of Scientific Instrument,2009, 30(12): 2659-2663.
[8] CHEN Bing-shan, LI Chun-yu, Wilson B, et al. Fractional modeling and analysis of coupled MR damping system [J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(03): 288-294.
[9] 游浩, 申永军, 杨绍普. 基于粒子群算法的被动分数阶汽车悬架参数优化设计[J]. 振动与冲击, 2017, 36(16): 224-228.
YOU Hao, SHEN Yong-jun, YANG Shao-pu, Parameters design for passive fractional-order vehicle suspension based on particle swarm optimization [J]. Journal of Vibration and Shock, 2017 ,36(16): 224-228.
[10] 陈炎冬. 对含分数阶阻尼器非线性悬架的PID控制研究[J].机械制造与自动化, 2016, 45(06): 88-91.
CHEN Yan-dong. Research on PID control of nonlinear suspension with fractional damper [J] Machine Building & Automation, 2016, 45(06): 88-91.
[11] 陈炎冬, 陈宁, 杨敏, 等. 对分数阶非线性悬架的遗传优化PI~λD~μ控制[J]. 现代制造工程, 2019, (01): 13-17.
CHEN Yan-dong, CHEN Ning, YANG Min, et al. Genetic optimization PI^λD^μ control for fractional nonlinear suspension [J]. Modern Manufacturing Engineering, 2019,(01): 13-17.
[12] 李小伟, 史俊武, 张建武. 主动油气悬架反馈线性化及PID控制[J]. 上海交通大学学报, 2009, 43(10): 1521-1525.
LI Xiao-wei, SHI Jun-wu, ZHANG Jian-wu. Feedback linearization and PID control for active hydropneumatic suspension [J]. Journal of Shanghai Jiaotong University, 2005(01): 113-116.
[13] 郑帅, 朱龙英, 张军. 基于微分几何的矿用汽车油气悬架LQG控制[J]. 计算机测量与控制, 2014, 22(12): 3950-3953.
ZHENG Shuai, ZHU Long-ying, ZHANG Jun. Mine truck hydro-pneumatic suspension LQG control based on differential geometry [J]. Computer Measurement & Control, 2014, 22(12): 3950-3953.
[14] 史俊武, 李小伟, 张建武. 导弹发射车主动油气悬架反馈线性化控制[J]. 系统仿真学报, 2009, 21(23): 7617-7621.
SHI Jun-wu, LI Xiao-wei, ZHANG Jian-wu. Feedback linearization control for missile launch vehicle active hydropneumatic suspension [J]. Journal of System Simulation, 2009, 21(23): 7617-7621.
[15] Pudlubny I. Fractional differential equations [M]. London: Academic Press, 1999.
[16] YOU Hao, SHEN Yong-jun, YANG Shao-pu. Optimal control and parameters design for the fractional-order vehicle suspension system [J]. Journal of Low Frequency Noise, Vibration & Active Control, 2018, 37(03): 456-467.
[17] 中华人民共和国国家标准. GB/T 4970—2009 汽车平顺性试验方法[S], 北京: 中国标准出版社, 2009.
National standard of People’s Republic of China. GB/T 4970—2009 Method of running test-automotive ride comfort [S]. Beijing: China Standard Press.
[18] 李峻岩, 万亦强, 赵旗, 等. 路面脉冲输入下军用汽车振动性能仿真 [J]. 中国科技论文在线, 2011, 6(11): 858-862.
LI Jun-yan, WAN Yi-qiang, ZHAO Qi, et al. Vibration performance simulation of military automobile under road pulse input [J]. Sciencepaper Online, 2011, 6(11): 858-862.
[19] 陈建国, 程军圣, 聂永红, 等. 基于微分几何的汽车半主动悬架解耦控制算法仿真[J]. 中国机械工程, 2012, 23(20): 2509-2514.
CHEN Jian-guo, CHENG Jun-sheng, NIE Yong-hong, et al. Simulation on vehicle Semi--active Suspension decoupling control algorithm based on differential geometry [J]. China Mechanical Engineering, 2012, 23(20): 2509-2514.
PDF(3130 KB)

Accesses

Citation

Detail

Sections
Recommended

/