Analytical study on the chaos threshold of a Duffing oscillator with a fractional-order derivative term by the Melnikov method

QIN Hao1,WEN Shaofang1,SHEN Yongjun2,XING Haijun2,WANG Jun2

Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (6) : 33-40.

PDF(1970 KB)
PDF(1970 KB)
Journal of Vibration and Shock ›› 2021, Vol. 40 ›› Issue (6) : 33-40.

Analytical study on the chaos threshold of a Duffing oscillator with a fractional-order derivative term by the Melnikov method

  • QIN Hao1,WEN Shaofang1,SHEN Yongjun2,XING Haijun2,WANG Jun2
Author information +
History +

Abstract

The bifurcations and chaos of a Duffing oscillator with a fractional-order derivative term was studied.The equivalent stiffness and equivalent damping were used to deal with the fractional-order derivative, where the derivative term was made equivalent to a term in the form of trigonometric function and exponential function.Then, the Melnikov method was used to analyze the necessary conditions for the bifurcation and chaos generation of the fractional-order Duffing oscillator.The approximate analytical solution of the fractional-order Duffing oscillator was obtained.Finally, the comparison between the analytical solution and the numerical solution was investigated, and the accuracy of the analytical result was proved.The influences of fractional order and coefficient of the fractional-order derivative on the necessary condition of chaos were studied by simulation.Additionally, it is found that there is a bistability characteristic in the fractional-order Duffing oscillator. Starting from the two steady-state solutions, the system can reach the chaos state through the period-doubling bifurcation with the change of external excitation parameter f, which was then confirmed by analyzing its dynamic response.

Key words

Melnikov method / fractional-order derivative / Duffing oscillator / heteroclinic orbit

Cite this article

Download Citations
QIN Hao1,WEN Shaofang1,SHEN Yongjun2,XING Haijun2,WANG Jun2. Analytical study on the chaos threshold of a Duffing oscillator with a fractional-order derivative term by the Melnikov method[J]. Journal of Vibration and Shock, 2021, 40(6): 33-40

References

[1]OLDHAM K B, SPANIER J.The fractional calculus: theory and applications of differentiation and integration to arbitrary order[M].New York: Academic Press, 1974.
[2]ROSS B.Brief history and exposition of the fundamental theory of fractional calculus[M].New York: Spring-Verlag, 1975.
[3]ROSS B.The development of fractional calculus 1695-1900[J].Historia Mathernatica, 1977,4(1): 75-89.
[4]PETRAS I.Fractional-order nonlinear system[M].Beijing: Higher Education Press, 2011.
[5]CAPONETTO R, EBRARY I.Fractional order systems : modeling and control applications[M].Singapore: World Scientific, 2010.
[6]MACHADO J T, KIRYAKOVA V, MAINARDI F.Recent history of fractional calculus[J].Communications in Nonlinear Science and Numerical Simulation, 2011,16(3): 1140-1153.
[7]LI C P, ZENG F H.Numerical methods for fractional calculus[M].New York: CRC Press, 2015.
[8]SUN H G, ZHANG Y, BALEANU D, et al.A new collection of real world applications of fractional calculus in science and engineering[J].Communications in Nonlinear Science & Numerical Simulation, 2018,64: 213-231.
[9]NAYFEH A H, MOOK A D.Nonlinear oscillations[M].New York: John Wiley & Sons, 1979.
[10]李占龙, 孙大刚, 宋勇,等.基于分数阶导数的黏弹性悬架减振模型及其数值方法[J].振动与冲击, 2016,35(16): 123-129.
LI Zhanlong, SUN Dagang, SONG Yong, et al.A fractional calculus-based vibration suppression model and its numerical solution for viscoelastic suspension[J].Journal of Vibration and Shock, 2016,35(16): 123-129.
[11]SHEN Y J, WANG L, YANG S P, et al.Nonlinear dynamical analysis and parameters optimization of four semi-active on-off dynamic vibration absorbers[J].Journal of Vibration and Control, 2013,19(1): 143-160.
[12]KOVACIC I, BRENNAN M J.The duffing equation: nonlinear oscillators and their behaviour[M].New York: John Wiley & Sons, 2011.
[13]SHEN Y J, YANG S P, LIU X D.Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method[J].International Journal of Mechanical Sciences, 2006,48(11): 1256-1263.
[14]LI X H, HOU J Y, SHEN Y J.Slow-fast effect and generation mechanism of brusselator based on coordinate transformation[J].Open Physics, 2016,14(1): 261-268.
[15]PODLUBNY I.Fractional differential equations[M].London: Academic Press, 1999.
[16]DIETHELM K, FORD N J, FREED A D.A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics, 2002,29(1/2/3/4): 3-22.
[17]FIRDOUS A, SHAH R, ABASS L D.Numerical solution of fractional differential equations using haar wavelet operational matrix method[J].International Journal of Applied and Computational Mathematics, 2017,3(3): 2423-2445.
[18]JAVIDI M, AHMAD B.Numerical solution of fractional partial differential equations by numerical Laplace inversion technique[J].Advances in Difference Equations, 2013,375(1): 1-18.
[19]TRIGEASSOU J C, MAAMRI N, SABATIER J, et al.A Lyapunov approach to the stability of fractional differential equations[J].Signal Processing, 2011,91(3): 437-445.
[20]QI Y F, PENG Y H.Stability analysis of fractional nonlinear dynamic systems with order lying in(1,2)[J].Chinese Quarterly Journal of Mathematics, 2019,34(2): 188-195.
[21]SHEN Y J, YANG S P, XING H J, et al.Primary resonance of duffing oscillator with fractional-order derivative[J].Communications in Nonlinear Science and Numerical Simulation, 2012,17(7): 3092-3100.
[22]SHEN Y J, WEI P, YANG S P.Primary resonance of fractional-order van der Pol oscillator[J].Nonlinear Dynamics, 2014,77(4): 1629-1642.
[23]申永军, 杨绍普, 邢海军.含分数阶微分的线性单自由度振子的动力学分析[J].物理学报, 2012,61(11): 158-163.
SHEN Yongjun, YANG Shaopu, XING Haijun.Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative[J].Acta Physica Sinica, 2012,61(11): 158-163.
[24]姜源,申永军,温少芳,等.分数阶达芬振子的超谐与亚谐联合共振[J].力学学报, 2017,49(5): 1008-1019.
JIANG Yuan, SHEN Yongjun, WEN Shaofang, et al.Super-harmonic and sub-harmonic simultaneous resonances of fractional-order Duffing oscillator [J].Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5): 1008-1019.
[25]顾晓辉,杨绍普,申永军,等.分数阶Duffing振子的组合共振[J].振动工程学报,2017,30(1): 28-32.
GU Xiaohui, YANG Shaopu, SHEN Yongjun, et al.Combined resonance of fractional Duffing oscillator[J].Journal of Vibration Engineering, 2017,30(1): 28-32.
[26]TABEJIEU L M A, NBENDJO B R N, WOAFO P.On the dynamics of Rayleigh beams resting on fractional-order viscoelastic Pasternak foundations subjected to moving loads[J].Chaos Solitons & Fractals, 2016,93: 39-47.
[27]SHEN Y J, WEN S F, YANG S P, et al.Analytical threshold for chaos in a Duffing oscillator with delayed feedbacks[J].International Journal of Non-Linear Mechanics, 2018,98: 1-8.
[28]SUN Z K, XU W, YANG X L, et al.Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback[J].Chaos, Solitons and Fractals, 2006,27(3): 705-714.
[29]WEN S F, CHEN J F, GUO S Q.Heteroclinic bifurcation behaviors of a Duffing oscillator with delayed feedback[J].Shock and Vibration, 2018,2018: 1-12.
[30]张思进,王紧业,文桂林.二自由度碰振准哈密顿系统亚谐轨道分析[J].振动与冲击, 2018,37(2): 102-107.
ZHANG Sijin, WANG Jinye, WEN Guilin.Subharmonic orbits analysis for a 2DOF vibro-impact quasi-Hamiltonian system[J].Journal of Vibration and Shock, 2018,37(2): 102-107.
[31]ABTAHI S M.Melnikov-based analysis for chaotic dynamics of spin-orbit motion of a gyrostat satellite[J].Proceedings of the Institution of Mechanical Engineers, 2019,233(4): 931-941.
[32]CHEN L C, HU F, ZHU W Q.Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping[J].Fractional Calculus and Applied Analysis, 2013,16(1): 189-225.
[33]GUCKENHEIMER J, HOLMES P.Nonlinear oscillations, dynamical system and bifurcations of vector fields[M].New York: Springer-Verlag, 1983.
PDF(1970 KB)

Accesses

Citation

Detail

Sections
Recommended

/