[1]COLE R H. Underwater explosion[M]. Princeton: Princeton University Press, 1948.
[2]RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion[J]. International Journal of Impact Engineering, 2001, 25(4):373-386.
[3]WEN H M. Deformation and tearing of clamped circular work-hardening plates under impulsive loading[J]. International Journal of Pressure Vessels and Piping, 1998, 75(1):67-73.
[4]NURICK G N,SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads: an experimental study[J].International Journal of Impact Engineering,1996,18(1): 99-116.
[5]NURICK G N, LUMPP D M. Deflection and tearing of clamped stiffened circular plates subjected to uniform impulsive blast loads [J]. WIT Transactions on the Built Environment, 1970, 25:393-402.
[6]NURICK G N, TEELING-SMITH R G. Predicting the onset of necking and hence rupture of thin plates loaded impulsively-an experimental view [C]//Structures under Shock and Impact II: Second International Conference. Portsmouth:SSI, 1992.
[7]WIERZBICKI T. Petalling of plates underwater explosive and impact loading[J]. International Journal of Impact Engineering, 1999,22(9):935-954.
[8]张振华,朱锡. 刚塑性板在柱状炸药接触爆炸载荷作用下的花瓣开裂研究[J]. 船舶力学,2004,8(5):113-119.
ZHANG Zhenhua, ZHU Xi. Petaling of rigid plastic plate under contact explosive loading of cylindrical dynamic[J]. Journal of Ship Mechanics,2004,8(5):113-119.
[9]牟金磊,朱锡,黄晓明,等.水下近场非接触爆炸作用下固支方板破口计算[J]. 振动与冲击,2011,30(1):37-39.
MU Jinlei, ZHU Xi, HUANG Xiaoming, et al. Crevasse computation of clamped square plates subjected to near-field noncontact underwater explosion[J]. Journal of Vibration and Shock,2011,30(1):37-39.
[10]LEBLANC J, SHILLINGS C,GAUCH E,et al. Near field underwater explosion response of polyurea coated composite plates[J].Experimental Mechanics,2016,56(4):569-581.
[11]荣吉利,李坚,杨荣杰,等.水下爆炸气泡脉动的实验及数值模拟研究[J].北京理工大学学报,2008,28(12):1035-1038.
RONG Jili, LI Jian, YANG Rongjie,et al. Experiment and numerical simulation for the bubble impulse in underwater explosion[J].Transactions of Beijing Institute of Technology, 2008,28(12):1035-1038.
[12]胡毅亭,贾宪振,饶国宁,等. 水下爆炸冲击波和气泡脉动的数值模拟研究[J].舰船科学技术,2009,31(2):134-140.
HU Yiting, JIA Xianzhen, RAO Guoning, et al. Numerical study of underwater explosion shock and bubble pulse[J]. Ship Science and Technology, 2009, 31(2):134-140.
[13]JEONG W, SEONG J. Comparison of effects on technical variances of computational fluid dynamic (CFD) software based on finite element and finite volume methods [J]. International Journal of Mechanical Sciences, 2014, 78:19-26.
[14]REED W H, HILL T R. Triangular mesh methods for the newton transport equation[R]. Los Alamos:Los Alamos Scientific Laboratory, 1973.
[15]PARK J. A coupled Runge-Kutta discontinuous Galerkin-direct ghost fluid (RKDG-DGF) method to near-field early-time underwater explosions (UNDEX) simulations[D].Montgomery County: Virginia Polytechnic Institute and State University, 2008.
[16]LOVERICH J, SHUMLAK U. A discontinuous Galerkin method for the full two-fluid plasma model[J]. Computer Physics Communications, 2005, 169: 251-255.
[17]FEDKIW R P, ASLAM T, MERRIMAN B, et al. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[J]. Journal of Computational Physics, 1999, 152: 457-492.
[18]QIU J X, LIU T G, KHOO B C. Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method[J]. Communications in Computational Physics, 2008,3(3):479-504.
[19]COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ:general frame work[J]. Mathematics of Computation, 1989, 52(186):411-435.
[20]COCKBURN B, LIN S Y, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: one-dimensional systems[J]. Journal of Computational Physics, 1989, 84(1):90-113.
[21]COCKBURN B, HOU S, SHU C W. The TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅳ:the multidimensional case[J]. Mathematics of Computation, 1990, 54(190):545-581.
[22]QIU J X, LIU T G, KHOO B C, et al. A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes[J]. Journal of Computational of Physics, 2006,212(2):540-565.
[23]QIU J X, LIU T G, KHOO B C. Runge-Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: one-dimensional case[J]. Journal of Computational of Physics, 2007, 222(1):353-373.
[24]PENG Y, DENG W Y, XU P, et al. Study on the collision performance of a composite energy-absorbing structure for subway vehicles[J]. Thin Walled Structures, 2015,94:663-672.
[25]ZAMYSHLYAYEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion[R]. Washington: Naval Intelligence Support Center,1973.
[26]KEIL A H. Introduction to underwater explosion research [M]. Portsmout: UERD, Norfolk Naval Ship Yard, 1956.
[27]吉田隆. 二次世界大战初期日本海军舰船在炸弹攻击下的损伤实例分析[J].船舶科学,1990,11(5):70-81.
Yoshida. Damage case analysis of Japanese navy ships subjected to bomb attack in the early of the second world war[J]. Ship Science, 1990, 11(5): 70-81.
[28]杨棣.水下爆炸下舰艇典型结构塑性损伤研究[D]. 哈尔滨:哈尔滨工程大学,2015.