PSO iterative learning control algorithm for shaking table based on feedforward compensation

AN Xin1,2, GAO Feng1, YANG Qiaoyu1, YANG Xueshan1

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (1) : 213-220.

PDF(1902 KB)
PDF(1902 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (1) : 213-220.

PSO iterative learning control algorithm for shaking table based on feedforward compensation

  • AN Xin1,2, GAO Feng1, YANG Qiaoyu1, YANG Xueshan1
Author information +
History +

Abstract

In order to solve the problems of low precision and many iterations of electromagnetic shaking table in the process of seismic signal reproduction, on the basis of establishing an accurate shaking table model, a feedforward inverse model compensation method based on acceleration model is proposed to improve the low frequency characteristics of electromagnetic shaking table. In addition, in order to solve the problem that the iterative learning control algorithm has a large number of iterations in the waveform reproduction of the shaking table, an improved adaptive particle swarm optimization algorithm is proposed to optimize the parameters of the control law off-line to achieve the purpose of improving the recurrence accuracy and reducing the number of iterations. The experimental results show that this method can effectively improve the reproduction accuracy in the process of a small number of iterations.

Key words

Shaking table / feedforward inverse control, iterative learning, particle swarm optimization

Cite this article

Download Citations
AN Xin1,2, GAO Feng1, YANG Qiaoyu1, YANG Xueshan1. PSO iterative learning control algorithm for shaking table based on feedforward compensation[J]. Journal of Vibration and Shock, 2022, 41(1): 213-220

References

[1] 高春华,纪金豹,闫维明,等.地震模拟振动台技术在中国的发展[J].土木工程学报,2014,47(8):9—19.
GAO Chun-hua,JIJin-bao,YAN Wei-ming,etal.Developments of shaking table technology in China[J].China Civil Engineering Journal, 2014, 47(8):9—19
[2] GB /T 20485.1-2008 振动与冲击传感器校准方法 第1部分: 基本概念[S].北京:中国标准出版社,2008.
[3] 匙庆磊,杨巧玉,安欣,吴志新.以地震波作为激励信号校准拾振器灵敏度[J].振动与冲击,2013,32(13):123-127.
Chi Qing-lei, Yang Qiao-yu, An Xin,et al. A sensitivity calibration method for a vibration transducer taking seismic waves as excitations[J].Journal of Vibration and Shock, 2013, 32(13):123-127.
[4]SHEN G, ZHU Z C, HAN J W, et al. Adaptive Feed-forward Compensation for Hybrid Control with Acceleration Time Waveform Replication on Electro-hydraulic Shaking Table[J]. Control Engineering Practice, 2013,21( 8) :1128-1142.
[5]Škrjanc, Igor. Feedforward control of a class of hybrid systems using an inverse model[J]. Mathematics & Computers in Simulation, 2012, 82(3):414-4276.
[6]Shen G , Zhu Z C , Li X , et al. Real-time electro-hydraulic hybrid system for structural testing subjected to vibration and force loading[J]. Mechatronics, 2015:49-70.
[7]Plummer, A R. Control techniques for structural testing: a review[J]. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems & Control Engineering, 2007, 221(2):139-169.
[8] 张兵,谢方伟, 张新星, 等. 基于子带自适应滤波的振动台功率谱复现[J]. 振动与冲击, 2016,35( 19) :138-142.
ZHANG Bing, XIE Fang wei, ZHANG Xin xing, et al. PSD replication of a shaking table based on subband adaptive filtering algorithm[J]. Journal of Vibration and Shock,2016,35( 19):138-142.
[9] Seki K, Iwasaki M, Kawafuku M, et al. Improvement of control performance in shaking-tables by feedback compensation for reaction force[C].34th Annal Conference of IEEE In dustrial Electronics, Orlando, FL, 2008
[10] Gang Shen, Xiang Li, Zhencai Zhu, Yu, Tang,et al. Acceleration tracking control combining adaptive control and off-line compensators for six-degree-of-freedom electro-hydraulic shaking tables[J]. ISA Transactions,2017,70.
[11] Wang S K, Wang J Z, Xie W, et al. Development of hydraulically drven shaking table for damping experiments on shock absorbers[J]. Mechatronics, 2014, 24(8):1132-1143
[12] 许国山,徐景锋,吴斌,冯立敏.位移-加速度振动台迭代学习控制方法试验研究[J].振动工程学报,2017,30(01):100-109.
XU Guo-shan, XU Jing-feng, WU Bin, et al. Experimental validation on displacement-acceleration iterative learning control for shaking table[J]. Journal of Vibration Engineering, 2014, 24(8):1132-1143
[13]曹广帅,冯庆胜.基于PSO优化的列车制动模糊PID控制算法[J].大连交通大学学报,2020,41(05):107-111.
CAO Guangshuai FENG Qingsheng, et al. Fuzzy PID Control Algorithm for Train Braking based on PSO Optimization[J]. Journal of Dalian Jiaotong University. 2020,41(05):107-111.
[14]叶海平.基于改进粒子群PID的注塑机温度自动控制[J].湖北师范大学学报(自然科学版),2020,40(03):62-66.
YE Hai-ping. Research on temperature control of injection molding machine based on improved fuzzy PID[J]. Journal of Hubei Normal University(Natural Science). 2020,40(03):62-66.
[15]曹广帅,冯庆胜.基于PSO优化的列车制动模糊PID控制算法[J].大连交通大学学报,2020,41(05):107-111.
[16]常添渊,黄晓华.基于IA-PSO-BP模型的电主轴热误差预测方法[J].机械与电子,2020,38(10):52-56.
CHANG Tianyuan, HUANG Xiaohua. A Thermal Error Prediction Method of Electric Spindle Based on IA-PSO-BP Model[J]. Machinery & Electronics. 2020,38(10):52-56.
[17]孙明翰,许哲,郑立康,许志强,杜凤山.基于改进型粒子群优化算法的双辊薄带振动铸轧压下控制系统优化[J].中国机械工程,2020,31(03):360-366.
Sun Minghan, Xu Zhe, Zheng Likang. Optimization of Twin-roll Thin Strip Vibrating Casting Screw-down Control Systems Based on Improved PSO Algorithm[J]. China Mechanical Engineering, 2020531 (03): 360-366.
[18]王闯,张勇,李学贵,董宏丽.改进粒子群算法及其在聚类分析中应用[J/OL].系统仿真学报:1-12
Wang Chuang, Zhang Yong, Li Xuegui, Dong Hongli. An improved particle swarm optimization algorithm and its application in clustering analysis [J/OL]. Journal of system Simulation: 1-12
[19]Xuewen Xia,Ying Xing,Bo Wei,Yinglong Zhang,Xiong Li,Xianli Deng,Ling Gui. A fitness-based multi-role particle swarm optimization[J].Swarm and Evolutionary Computation,2018.
PDF(1902 KB)

Accesses

Citation

Detail

Sections
Recommended

/