In order to investigate the slipper-rail contact characteristics of rocket sled, the Eluer-Bernouli beam elements were used to discretize the rocket sled, and the slipper-rail nonlinear contact force model considering irregularity of the rail was established, the sled-rail dynamics equations including the slipper-rail nonlinear contact force was solved by combining newmark-β with Newton-Raphson local iteration method, and the correctness of the numerical solution was verified through experiments. The numerical results show that at 700 m/s, the peak of the slipper-rail contact force is 2.27×106N, and the single slipper-rail collision time is between 0.35ms-0.45ms; slipper-rail collision time is proportional to the forward speed of rocket sled, and it accounts for 26.0% of the total time at 700m/s; slipper-rail contact speed is proportional to square of the forward speed, the upper limit of the rocket sled forward speed is 820m/s when 2.54m/s is the maximum contact speed that the rail can bear.
Key words
rocket sled /
slipper-rail contact /
numerical analysis /
dynamics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 张立乾. 单轨火箭滑橇橇轨动力性能研究[D]. 北京:北京工业大学. 2012.
ZHANG Liqian. The research on dynamic performance of rail and sled of monorail sleds[D]. Beijing: Beijing University of Technology. 2012.
[2] 付良,谢波涛,徐健,等. 单轨火箭橇阻力板刹车技术研究[J]. 导航与控制,2015(6): 32-37.
FU Liang, XIE Botao, XU Jian, et al. Plate-like air braking technology for monorail rocket sled[J]. Navigation control, 2015(6): 32-37.
[3] 杨珍,范坤,胡兵,等. 超声速单轨火箭橇动态载荷预示技术研究[J]. 兵器装备工程学报,2019, 40(3): 247-251.
YANG Zhen, FAN Kun, HU Bing, et al. Study on dynamic load prediction of the supersonic monorail rocket sled[J]. Journal of Ordnance Equipment Engineering , 2019, 40(3): 247-251.
[4] Furlow J S. Parametric dynamic load prediction of a narrow gauge rocket sled [D]. Las Cruces New Mexico USA: New Mexico State University, 2006.
[5] 王建. 高速火箭橇-轨道系统耦合动力学研究[D]. 南京:南京理工大学. 2011.
WANG Jian. The research for coupled dynamics of high speed rocket sled-track systems[D]. Nanjing: Nanjing University of Science Technology. 2011.
[6] J L LAMB. Critical velocities for rocket sled excitation of rail resonance[J]. Johns Hopkins Apl Technical Digest, 2000,21(3):448-458.
[7] S V Butova, S I Gerasimov, V I Erofeev, et al. Stability of high speed objects moving along a rocket track guide[J]. Journal of Machinery Manufacture and Reliability, 2015, Vol. 44(1):1-5.
[8] John D C, Anthony N P. Analysis and simulation of hypervelocity gouging impacts for a high speed sled test[J]. International Journal of Impact Engineering, 2009, 36(l): 254-262.
[9] David J L, Anthony N P. Gouge development during hypervelocity sliding impact[J].International Journal of Impact Engineering, 2004, 30(1): 205-223.
[10] Fei Wang, Gui-HuoLuo, Xi-Guan Yang, et al. Research on modeling and dynamic characteristics of complex coaxial rotor system[J]. Journal of Vibroengineering, 2017, 19(3): 1524-1545.
[11] 胡成宝,王云岗,凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版),2017, 7(51): 1284- 1290.
HU Chengbao, WANG Yungang, LING Daosheng. Effect of rayleigh damping physical essence and parameters on dynamic response[J]. Journal of Zhejiang University (Engineering Science) , 2017, 51 (7):L 1284-1290.
[12] 韦勇. 阻尼结构振动系统的动力学建模、分析和修改[D]. 南京: 南京航空航天大学. 2003.
WEI Yong. Dynamic modeling, analysis and updating method for damped structure vibration system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2003.
[13] 安雪斌,潘尚峰. 多体系统动力学仿真中的接触碰撞模型分析[J],计算机仿真,2018, 25(10): 98-101.
An Xuebin,Pan Shangfeng. Analysis of contact model in multi-body system dynamic simulation[J]. Computer Simulation, 2008, 25 (10): 98-101.
[14] 王健,吴军基,陶钢. 高精度火箭橇试验轨道随机不平顺分析[J]. 航空精密制造技术,2009, 45(5): 31-35.
WANG Jian, WU Junji, TAO Gang. Stochastic irregularity analysis on high accuracy rocket sled test track[J]. Aviation Precision Manufacture Technology, 2009, 45(5): 32-35.
[15] 杨兴邦. XB火箭橇试验滑轨的直线度评估[J]. 航空精密制造技术, 1999, 35(5): 25-29.
YANG Xingbang. Estimate of XB rocket sled test track linearity[J]. Aerial Exact Manufacture Technology, 1999, 35(5): 25-29.
[16] 赵项伟. 静偏心下挤压油膜阻尼器动力特性探究[D]. 南京: 南京航空航天大学. 2018.
Zhao Xiangwei. Investigation for effects of static eccentricity on dynamic characteristics of squeeze film damper[D]. Nanjing: Nanjing University of Aeronautics and Astronautics. 2018.
[17] Hooser M D. Simulation of a 10000 foot per second ground vehicle[R]. AIAA2000-2290, Holloman AFB, NM, USA, 2000: 1-9.
[18] Hooser C D . Holloman high speed test track rail alignment criteria[R]. AIAA2000-0156, Holloman AFB, NM, USA, 2000: 1-8.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}