Analytical calculation method for the pre-stress basic frequency of wind turbine towers based on Rayleigh method

LEI Zhenbo1,LIU Gang1,2,YANG Wei3,4,LI Yang3,4

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (10) : 23-29.

PDF(1356 KB)
PDF(1356 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (10) : 23-29.

Analytical calculation method for the pre-stress basic frequency of wind turbine towers based on Rayleigh method

  • LEI Zhenbo1,LIU Gang1,2,YANG Wei3,4,LI Yang3,4
Author information +
History +

Abstract

The large-scale development trend of wind turbines makes the tower taller and more flexible, and the diameter and wall thickness of the tower become more and more various with height. Therefore, the calculation accuracy of the traditional simplified fundamental frequency analytical calculation method is greatly reduced, and it is difficult to meet the requirements of the fundamental frequency estimation in the early stage of tower design. In this paper, the equivalent wall thickness and average equivalent moment of inertia are proposed to consider the various changes in tower diameter and wall thickness along the height, so as to simplify the calculation of tower stiffness. Based on the basic principle of Rayleigh energy method, considering the influence of wind turbine and nacelle mass on tower pre-compression stress, mass eccentricity and different deformation forms of tower on fundamental frequency calculation, this paper proposes a corresponding analytical calculation method for fundamental frequency of tower. The numerical example of the tower and the scale test show that the eccentricity of the top nacelle and impeller mass has a great influence on the fundamental frequency of the tower, and its influence should be considered in the analytical calculation. The analytical value of the tower fundamental frequency under uniform load deformation is closer to the true value. The deviation between the proposed analytical method and the calculated value of the refined finite element model is less than 4%, and the deviation from the measured value of the scale model is less than 5%.

Key words

Wind turbine tower / Fundamental frequency / Rayleigh method / Deformed shape / Quality eccentricity

Cite this article

Download Citations
LEI Zhenbo1,LIU Gang1,2,YANG Wei3,4,LI Yang3,4. Analytical calculation method for the pre-stress basic frequency of wind turbine towers based on Rayleigh method[J]. Journal of Vibration and Shock, 2022, 41(10): 23-29

References

[1]  宋冬然,杨建,董密,等.两叶片变速风力机组避免塔架共振控制策略[J].振动与冲击,2015,34(16):90-98.
SONG Dongran, YANG Jian, DONG Mi, et al. Control strategy to avoid tower resonance for two-blade variable-speed wind turbine [J]. Journal of Vibration and Shock,2015,34(16):90-98.
[2] 李杨,兰涌森,李强,等.风力机塔架结构振动控制研究及方法综述[J].船舶工程,2020,42(增刊2):248-253.
    LI Yang,LAN Yongsen,LI Qiang, et al. Research and method summary on vibration control of wind turbine tower structure [J]. Ship Engineering, 2020, 42(Suppl.2):248-253.
[3]  陈琛,马宏旺,李玉韬,等.冲刷对海上风电单桩基础自振频率影响的研究[J].振动与冲击,2020,39(22):16-22.
CHEN Chen, MA Hongwang, LI Yutao, et al. Effects of scour on the natural frequency of offshore wind turbine structures [J]. Journal of Vibration and Shock,2020,39(22):16-22.
[4] HERNANDEZ-ESTRADA E, LASTRES-DANGUILLECOURT O, ROBLES-OCAMPO J B, et al. Considerations for the structural analysis and design of wind turbine towers: a review[J]. Renewable and Sustainable Energy Reviews ,2021, 137: 110447.
[5] BYRNE B. Foundation design for offshore wind turbines[C]// Geotechnique Lecture. London: University of Oxford, 2011.
[6] 牛文杰.考虑桩–弹性地基相互作用的单桩风机自振频率[J].地震工程学报,2016,38(5):713-719.
NIU Wenjie. Natural frequency of mono-pile wind turbine considering interaction between pile and elastic foundation [J]. China Earthquake Engineering Journal,2016,38(5):713-719.
[7] 杨春宝,王睿,张建民.单桩基础型近海风机系统自振频率实用计算方法[J].工程力学,2018,35(4):219-225.
YANG Chunbao, WANG Rui, ZHANG Jianmin. Numerical method for calculating system fundamental frequencies of offshore wind turbines with monopile foundations [J].Engineering Mechanics,2018,35(4):219-225.
[8] 曾梦伟,魏克湘,李颖峰,等.大型风力机塔架固有频率分析[J].噪声与振动控制,2017,37(4):30-33.
ZENG Mengwei, WEI Kexiang, LI Yingfeng, et al. Natural frequency analysis of a wind turbine tower [J].Noise and Vibration Control,2017,37(4):30-33.
[9] 田英鹏,徐丹,周惠蒙,等.对风力发电机塔架施工阶段TMD阻尼器的研究[J].工程力学,2019,36(增刊1):184-188.
TIAN Yingpeng,XU Dan,ZHOU Huimeng, et al.  Study on the tmd damping of wind turbine towers in construction [J]. Engineering Mechanics,2019,
36(Suppl.1):184-188.
[10] COLHERINHAS G B , SHZU M A M, AVILA S M, et al. Wind tower vibration controlled by a pendulum TMD using genetic optimization: beam modelling [J]. Procedia Engineering, 2017,199:1623-1628.
[11] CHEN J L,GEORGAKIS C T.Tuned rolling-ball dampers for vibration control in wind turbines[J]. Journal of Sound and Vibration, 2013, 332(21):5271-5282.
[12] 陈前,付世晓,邹早建.海上风力发电机组支撑结构动力特性分析[J].振动与冲击,2012,31(2):86-90.
CHEN Qian,FU Shixiao,ZOU Zaojian. Dynamic characteristics analysis for support structure of an offshore wind turbine [J]. Journal of Vibration and Shock,2012,31(2):86-90.
[13] 文锋,杨帆,吴守城. 确定钢筋混凝土-钢组合风机塔筒固有频率的方法: CN109915327B [P]. 2020-05-12.
 [14] 郑惠强.阶梯形变截面梁刚度的简便计算[J].机械设计与制造,1992(4):41.
ZHENG Huiqiang. Convenient calculation of the stiffness of stepped beam with variable cross-section [J]. Machinery Design & Manufacture,1992(4):41.
[15] 刘德华,黄超.材料力学:Ⅰ [M] 重庆:重庆大学出版社,2011.
 [16] 谢远森,李意民,周忠宁,等.旋转预应力条件下的叶片流固耦合模态分析[J].噪声与振动控制,2009,29(4):34-37.
XIE Yuansen, LI Yimin,ZHOU Zhongning,et al. Mode analysis of fluid-structure coupling blade under rotational and pre-stress condition [J]. Noise and Vibration Control ,2009,29(4):34-37.
[17] 孟家瑶,戴靠山,毛振西,等.某1.5MW风电塔振动台缩尺模型设计[J].世界地震工程,2018,34(4):191-198.
MENG Jiayao, DAI Kaoshan, MAO Zhenxi,et al. Shaking table test model design of a 1.5MW wind turbine tower [J].World Earthquake Engineering,2018,34(4):191-198.
[18] ZUO H R, BI K M, HAO H. A state-of-the-art review on the vibration mitigation of wind turbines[J]. Renewable and Sustainable Energy Reviews,2020, 121: 109710.
[19] ASCE I P P E M , ASCE CM U M , ASCE A E M , et al. Shake table testing of a utility-scale wind turbine[J]. Journal of Engineering Mechanics, 2012, 138(7):900-909.
[20] 马小飞,韦娟芳.高细对称结构正交耦合振动响应的试验研究[J].应用力学学报,2011,28(6):640-643.
MA Xiaofei, WEI Juanfang. Experimental research on orthogonal coupling vibration response of tall and thin symmetrical structure[J].Chinese Journal of Applied Mechanics,2011,28(6):640-643.
[21] 刘纲, 杨溥, 秦阳,等. 酒杯型输电塔损伤定位的识别方法[J]. 振动.测试与诊断, 2012, 32(3):471-476.
LIU Gang, YANG Pu, QIN Yang, et al. Identification method for damage location of wineglass transmission tower[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(3):471-476.
[22] SUN C, JAHANGIRI V.Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper[J].  Mechanical Systems and Signal Processing,2018,105:338-360.
[23] SI Y , KARIMI H R , GAO H . Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering Structures, 2014, 69:168-182.
[24] ZHANG  Z  L.Optimal tuning of the tuned mass damper (TMD) for rotating wind turbine blades[J].Engineering Structures, 2020,207 : 110209.
PDF(1356 KB)

558

Accesses

0

Citation

Detail

Sections
Recommended

/