Equilibrium bifurcation analysis of functionally graded pipe conveying fluid with initial curvature

GONG Yafei, ZHEN Yaxin

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (11) : 27-32.

PDF(848 KB)
PDF(848 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (11) : 27-32.

Equilibrium bifurcation analysis of functionally graded pipe conveying fluid with initial curvature

  • GONG Yafei, ZHEN Yaxin
Author information +
History +

Abstract

In real life, almost all pipes contain initial curvature. In view of this phenomenon, the equilibrium bifurcation of a functionally graded pipe with initial curvature is investigated analytically. Based on the generalized Hamiltonian principle and the Euler-Bernoulli beam theory, the nonlinear equation for the longitudinal and transverse coupled vibration of a functionally graded fluid-conveying pipe with initial curvature under fixed support condition is derived. The analytical expressions for the equilibrium configuration and critical flow velocity of functionally graded straight pipe and pipe with initial curvature under supercritical flow velocity are given. The influences of power-law exponent, length of pipe and intimal curvature amplitude on the equilibrium bifurcations are investigated in detail.

Key words

Initial Curvature / Functionally Graded Materials / Equilibrium Bifurcation / Fluid-conveying Pipe

Cite this article

Download Citations
GONG Yafei, ZHEN Yaxin. Equilibrium bifurcation analysis of functionally graded pipe conveying fluid with initial curvature[J]. Journal of Vibration and Shock, 2022, 41(11): 27-32

References

[1]  Païdoussis, Michael P. Flow-induced instabilities of cylindrical structures[J]. Applied Mechanics Reviews, 1987, 40(2):163-175.
[2]  曾国华. 输流管道非线性振动模型及仿真研究[D]. 武汉科技大学, 2007.
ZENG Guohua. Study on nonlinear vibration model and simulation of flow pipeline[D]. Wuhan University of Science and Technology, 2007.
[3]  朱晨光, 徐思朋. 功能梯度输流管的非线性自由振动分析[J]. 振动与冲击, 2018(14):195-201.
    ZHU Chenguang, Xu Sipeng. Nonlinear free vibration analysis of functionally graded pipes[J]. Journal of Vibration and Shock, 2018(14):195-201.
[4]  刘淼. 功能梯度材料结构的非传统Hamilton变分原理及其有限元法[D]. 同济大学航空航天与力学学院, 2008.
Liu Miao. Non-traditional hamiltonian variational principle and finite element method for functionally graded material Structures[D]. School of Aerospace and Mechanics, Tongji University, 2008.
[5]  Piovan M T, Sampaio R. Vibrations of axially moving flexible beams made of functionally graded materials - ScienceDirect[J]. Thin-Walled Structures, 2008, 46(2): 112-121.
[6]  邹俭鹏, 阮建明, 周忠诚,等. 功能梯度材料的设计与制备以及性能评价[J]. 粉末冶金材料科学与工程, 2005, 10(002): 78-87.
ZOU Jianpeng, RUAN Jianming, ZHOU Zhongcheng, et al. Design, preparation and performance evaluation of functionally graded materials[J]. Powder Metallurgy Materials Science and Engineering, 2005, 10(002): 78-87.
[7] 王明禄, 魏高峰, 李翠艳, 等. 功能梯度材料梁的自由振动问题研究[J]. 齐鲁工业大学学报, 2009, 23(3):19-21
WANG Minglu, WEI Gaofeng, LI Cuiyan, et al. Study on free vibration of functionally graded material beams[J]. Journal of Qilu University of Technology, 2009, 23(3): 19-21
[8] 林鹏程, 滕兆春. 热冲击下轴向运动FGM梁的自由振动分析[J]. 振动与冲击, 2020, 39(368): 254-261.
    LIN Pengcheng, TENG Zhaochun. Free vibration analysis of axial moving FGM beam under thermal shock[J]. Vibration and Shock, 2020, 39(368): 254-261.
[9] Tang Y, Lv X, Yang T. Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration[J]. Composites Part B: Engineering, 2019, 156: 319-331.
[10] Czerwiński, Andrzej, Luczko, Jan. Non-planar vibrations of slightly curved pipes conveying fluid in simple and combination parametric resonances[J]. Journal of Sound & Vibration, 2018, 413: 270-290.
[11] Li Q, Liu W, Lu K, et al. Nonlinear Parametric Vibration of the Geometrically Imperfect Pipe Conveying Pulsating Fluid[J]. International Journal of Applied Mechanics, 2020, 12(06): 2050064.
[12] 张泽超, 陈志华, 刘红波,等. 含初始缺陷管中管侧向屈曲过程中的动态效应研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 052(004): 404-412.
    ZHANG Zechao, CHEN Zhihua, LIU Hongbo, et al. Dynamic effect of lateral buckling in a pipe with initial defects[J]. Journal of Tianjin University (Natural Science and Engineering Technology), 2019, 052(004):404-412.
[13] 党锡淇, 黄幼玲. 工程中的管道振动问题[J]. 力学与实践, 1993, 15(004):9-16.
   DANG Xiqi, HUANG Youling. Vibration of pipeline in engineering[J]. Mechanics in Engineering, 1993, 15(004): 9-16.
[14] 周云, 刘季. 管道振动及其减振技术[J]. 哈尔滨建筑工程学院学报, 1994, 27(5):108-108.
    ZHOU Yun, LIU Ji. Pipe Vibration and vibration reduction technology[J]. Journal of Harbin Institute of Civil Engineering and Architecture, 1994, 27(5): 108-108.
[15] 高国华, 李琪. 弯曲井眼中受压管柱的屈曲分析[J]. 应用力学学报, 1996, 1:115-120.
    GAO Guohua, LI Qi. Buckling analysis of compression string in curved borehole[J]. Chinese Journal of Applied Mechanics, 1996(1): 115-120.
[16] 高德利, 刘凤梧, 徐秉业. 油气井管柱的屈曲行为研究[J]. 自然科学进展:国家重点实验室通讯, 2001.
    GAO Deli, LIU Fengwu, XU Bingye. Study on buckling behavior of pipe string in oil and gas Wells[J]. Advances in Natural Science: Communications of State Key Laboratory, 2001.
[17] 刘祥康, 丁亮亮, 李玉飞,等. 超深气井完井管柱屈曲行为研究[J]. 石油机械, 2020, 048(002): 29-34, 41.
    LIU Xiangkang, DING Liangliang, LI Yufei, et al.Study on the buckling behavior of completion string in ultra-deep gas Wells[J]. China Petroleum Machinery, 2020, 048(002): 29-34, 41.
[18] Tang Y, Yang T. Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material[J]. Composite Structures, 2017, 185: 393-400.
[19] Dehrouyeh-Semnani A   M.  On the thermally induced non-linear response of functionally graded beams[J].  International Journal of Engineering Science, 2018, 125: 53-74.
PDF(848 KB)

372

Accesses

0

Citation

Detail

Sections
Recommended

/