Theoretical model and vibration isolation characteristics of a lever-type vibration isolator

WANG Zhihao,PAN Xiagui,WU Chuanyu,YAN Bo

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (14) : 145-150.

PDF(2358 KB)
PDF(2358 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (14) : 145-150.

Theoretical model and vibration isolation characteristics of a lever-type vibration isolator

  • WANG Zhihao,PAN Xiagui,WU Chuanyu,YAN Bo
Author information +
History +

Abstract

A novel lever-type vibration isolator consisting of a lever substructure and a mass-spring-damper unit is proposed to improve the vibration isolation performance by adjusting the lever ratio. The theoretical model is established. The differential equation of motion of the vibration isolator is obtained according to Lagrange equation. The expression of the displacement transmissibility is derived. A prototype of the lever-type vibration isolator is developed. The effects of the free-end mass of the lever, the lever ratio and the nonlinear damping on the vibration isolation performance and bandwidth of the lever-type vibration isolator are analyzed numerically and experimentally. The experimental results show good agreements with the theoretical model and simulation results. The results demonstrate the mass at the free-end of the lever can improve the vibration isolation performance and the vibration isolation bandwidth. The vibration isolation performance can be conveniently improved by adjusting the lever ratio. The transmissibility of the vibration isolator can be decreased by increasing the damping. This study has certain guiding significance for the design and application of lever-type vibration isolators.
Key words: vibration isolation; lever-type vibration isolator; lever ratio; transmissibility

Key words

vibration isolation / lever-type vibration isolator / lever ratio / transmissibility

Cite this article

Download Citations
WANG Zhihao,PAN Xiagui,WU Chuanyu,YAN Bo. Theoretical model and vibration isolation characteristics of a lever-type vibration isolator[J]. Journal of Vibration and Shock, 2022, 41(14): 145-150

References

[1]  IBRAHIM R A. Recent advances in nonlinear passive vibration isolators [J]. Journal of Sound and Vibration, 2008, 314(3-5): 371-452.
[2] 刘兴天,黄修长,张志谊,等. 激励幅值及载荷对准零刚度隔振器特性的影响[J]. 机械工程学报,2013,49(6):89-94.
Liu Xingtian,Huang Xiuchang,Zhang Zhiyi,et al. Influence of exctitation amplitude and load on the characterisitcs fo quasi-zero stiffness isolator[J]. Journal of Mechnical Engineering, 2013,49(6): 89-94.
[3] 肖庆雨,周加喜,徐道临,等.一种六自由度准零刚度隔振平台[J]. 振动与冲击, 2019, 38(01): 258-264.
Xiao Qingyu,Zhou Jiaxi, et al. A 6-DOF quasi-zero stiffness vibration isolation platform[J]. Journal of Vibration and Shock, 2019, 38(01): 258-264.
[4] 徐道临,张月英,周加喜,等.一种准零刚度隔振器的特性分析与实验研究[J].振动与冲击,2014,33(11):208-213.
Xu Daolin,Zhang Yueying,Zhou Jiaxi,et al. Characteristic analysis and experimental investigation of a Vibration isolator with quasi-zero-stiffness[J]. Journal of Vibration and Shock, 2014,33(11):208-213.
[5] 裴亚鲁,黄修长,张志谊.网结构隔振特性的理论与实验研究[J].振动与冲击, 2015, 34(01): 13-18.
Pei Yalu,Huang Xiuchang,Zhang Zhiyi. Theoretical and Experimental Study on the Vibration Isolation Performance of a Grid-structure[J]. Journal of Vibration and Shock, 2015,34(01):13-18.
[6] FRAHM H. Device for damping vibrations of bodies: U.S. Patent 989, 958[P]. 1911-4-18.
[7] 徐洋,孙志军,陈广峰,等.柔性耦合隔振系统主动控制方法的仿真研究[J].噪声与振动控制, 2010, 30(2): 16-18.
Xu Yang, Sun Zhijun, Chen Guangfeng, et al.Simulation study on active control method of flexible coupled isolation system[J]. Noise and Vibration Control, 2010, 30(2): 16-18.
[8] 王超新,刘兴天,张志谊.基于立方体STEWART的微振动主动控制分析与实验[J].振动与冲击,2017,36(05):208-213.
Wang Chaoxin,Liu Xingtian,Zhang Zhiyi. Micro-vibration active control for a Stewart platform with a cubic configuration[J]. Journal of Vibration and Shock, 2017, 36(05): 208-213.
[9] Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications [J]. Joule, 2018, 2(4): 642-697.
[10] CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic [J]. Journal of Sound and Vibration, 2007, 301(3-5): 678-689.
[11] 严博,马洪业,韩瑞祥,等. 可用于大幅值激励的永磁式非线性隔振器[J]. 机械工程学报, 2019, 55(11): 169-175.
Yan Bo, Ma Hongye, Han Ruixiang, et al. Permanent magnets based nonlinear vibration isolator subjected to large amplitude acceleration excitations[J]. Journal of Mechnical Engineering,2019,55(11):169-175.
[12] 杨凯,张业伟,陈立群,等.基于非线性消振器的空间结构被动振动抑制[J]. 动力学与控制学报, 2014, 12(3): 205-20.
Yang Kai, Zhang Yewei, Chen Liqun, et.al. Space structure vibration control based on passive nonlinear energy sink[J]. Journal of Dynamics and Control, 2014, 12(3): 205-209.
[13] Liu C, Jing X, DALEY S, et al. Recent advances in micro-vibration isolation [J]. Mechanical Systems and Signal Processing, 2015, 56-57(5): 55-80.
[14] Yan B, Ma H Y, Jian B, et al. Nonlinear dynamics analysis of a bi-state nonlinear vibration isolator with symmetric permanent magnets [J]. Nonlinear Dyn, 2019, 97(4): 2499-2519.
[15] Yan B, Ma H, Zhang L, et al. A bistable vibration isolator with nonlinear electromagnetic shunt damping [J]. Mechanical Systems and Signal Processing, 2020, 136: 106504.
[16] 董光旭,张希农,谢石林,等.基于负刚度机构的高刚度-超阻尼隔振器设计与研究[J].振动与冲击,2017,36(09):239-246.
Dong Guangxu,Zhang Xinong,Xie Shilin,et al. Design of a high stiffness and hyper-damping vibration isolator based on negative stiffness mechanism[J]. Journal of Vibration and Shock, 2017,36(09):239-246.
[17] Sun X T, Jing X J. Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure [J]. Mechanical Systems and Signal Processing, 2016, 66-67: 723-742.
[18] 王毅,徐道临,周加喜.滚球型准零刚度隔振器的特性分析[J].振动与冲击, 2015, 34(04): 142-147.
Wang Yi,Xu Daolin,Zhou Jiaxi. Analysis of a Ball-type Vibration Isolator with Quasi-zero-stiffness Characteristic[J]. Journal of Vibration and Shock, 2015,34(04):142-147.
[19] Wang Y, Jing X J. Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure [J]. Mechanical Systems and Signal Processing, 2019, 125: 142-169.
[20] Ling X J, Zhang L L, Feng X, et al. A novel bio-inspired anti-vibration structure for operating hand-held jackhammers [J]. Mechanical Systems and Signal Processing, 2019, 118: 317-339.
[21] IBRAHIM R A. Excitation-induced stability and phase transition: A review [J]. Journal of Vibration and Control, 2006, 12(10): 1093-1170.
[22] HALWES D R, SIMMONS W A. Vibration suppression system: U.S. Patent 4, 236, 607[P]. 1980-12-2.
[23] FLANNELLY W G. Dynamic antiresonant vibration isolator: U.S. Patent 3,322,379 [P]. 1967-5-30.
[24] YILMAZ C, KIKUCHI N.Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications[J]. Journal of Sound and Vibration, 2006, 291(3-5): 1004-1028.
[25] YILMAZ C, KIKUCHI N. Analysis and design of passive low-pass filter-type vibration isolators considering stiffness and mass limitations [J]. Journal of Sound and Vibration, 2006, 293(1-2): 171-195.
[26] Liu C, Jing X, Li F. Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure [J]. International Journal of Mechanical Sciences, 2015, 98: 169-177.
[27] Zang J, Yuan T C, Lu Z Q, et al. A lever-type nonlinear energy sink [J]. Journal of Sound and Vibration, 2018, 437: 119-134.
[28] Yang K, Fei F, An H C.Investigation of coupled lever-bistable nonlinear energy harvesters for enhancement of inter-well dynamic response[J]. Nonlinear Dynamics, 2019, 96(4): 2369-2392.
PDF(2358 KB)

Accesses

Citation

Detail

Sections
Recommended

/