Dynamic response of laminated aluminum plate under falling hammer impact

ZHOU Yilai1,2, ZHAO Zhenyu1,2, REN Jianwei1,2, BIAN Peng3, LU Tianjian1,2

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (15) : 233-243.

PDF(4445 KB)
PDF(4445 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (15) : 233-243.

Dynamic response of laminated aluminum plate under falling hammer impact

  • ZHOU Yilai1,2, ZHAO Zhenyu1,2, REN Jianwei1,2, BIAN Peng3, LU Tianjian1,2
Author information +
History +

Abstract

As a new type of impact resistant structures, laminated metallic structures attract increasingly more attention from researchers worldwide. In order to study the effect of lamination on deformation,impact acceleration and the difference in impact resistance between a laminated plate and a monolayer plate of equal mass, their dynamic responses measured experimentally under drop-hammer impact loading were compared. Subsequently, the method of dynamic nonlinear finite elements is used to numerically simulate the drop-hammer test, with good agreement between simulation results and experimental measurements achieved. It is demonstrated that, under identical impact loading, compared with the monolayer plate, the laminated plate can greatly reduce the peak acceleration of the hammer head, thus providing a better protection to the hammer head. The maximum displacement of laminated aluminum plate is greater than that of monolayer aluminum plate of equal mass, which increases with the increase of total plate thickness (i.e., the number of laminations). For a laminated aluminum plate, its maximum displacement is significantly influenced by the interlaminar frictional coefficient, decreasing when the frictional coefficient becomes relatively large, or relatively small.
Key words: laminated aluminum plate; drop-hammer impact; dynamic response; finite element simulation

Key words

laminated aluminum plate / drop-hammer impact / dynamic response / finite element simulation

Cite this article

Download Citations
ZHOU Yilai1,2, ZHAO Zhenyu1,2, REN Jianwei1,2, BIAN Peng3, LU Tianjian1,2. Dynamic response of laminated aluminum plate under falling hammer impact[J]. Journal of Vibration and Shock, 2022, 41(15): 233-243

References

[1] 曹军帅,任传波,孙志钏,等. 多角度人车碰撞事故中行人的损伤性分析[J].山东理工大学学报(自然科学版),2021,35(01):33-36.
Cao Junshuai,Ren Chuanbo,Sun Zhichuan,et al. The analysis of pedestrian damage in multi-angle pedestrian-vehicle collisions[J]. Journal of Shandong University of Technology(Natural Science Edition),2021,35(01):33-36.
[2] 蒋阳,黄海波. 人车碰撞中行人损伤影响因素研究[J].中国安全科学学报,2017,27(03):95-99.
Jiang Yang,Huang Haibo. A study on multiple factors affecting pedestrian injury in pedestrian-car collision accident[J]. China Safety Science Journal, 2017,27(03):95-99.
[3] 张攀. 汽车碰撞数值仿真与耐撞性分析[D]. 重庆理工大学, 2009.
Zhang Pan. Numerical Simulation and Crashworthiness Analysis of Vehicle Crash[D]. Chongqing University of Technology,2009.
[4] 李丹, 李平飞, 廖文俊,等. 行人运动状态对人车碰撞事故中行人损伤的影响[J]. 科学技术与工程, 2019, 019(020):383-388.
Li  Dan, Li Pingfei, Liao Wenjun, et al.  Effects of pedestrian motion state on pedestrian injury in human-vehicle collision [J]. Science Technology and Engineering, 2019, 019(020):383-388.
[5] 王丽珍,樊瑜波. 过载性损伤与防护生物力学[J].力学进展,2020,50(00):124-168.
Wang L Z,Fan Y B. The biomechanics of injury and prevention. Advances in Mechanics,2020, 50: 202004.
[6] 黄靖. 汽车碰撞过程中加速度特征对乘员损伤的影响分析[D].大连理工大学,2009.
Huang Jing. The Occupant Injury Analysis of the Character From Acceleration Curves on Dummy during the Vehicle Crash Process[D]. Dalian University of Technology,2009.
[7] Shunfeng Li, Zhi Xiao, Yunfei Zhang,et al. Impact analysis of a honeycomb-filled motorcycle helmet based on coupled head-helmet modelling, International Journal of Mechanical Sciences,2021,106406,ISSN 0020-7403.
[8] 冉滔,宋刚,谢文举,等.汽车车身耐撞性和碰撞相容性研究[J].汽车实用技术,2019(12):34-36.
Ran Tao,Song Gang,Xie WenJu,et al. Research on crashworthiness and collision compatibility of automobile body[J]. Automobile Applied Technology,2019(12):34-36.
[9] 赵桂范, 杨娜, 朱曰莹. 车辆碰撞兼容性分析[C]// Infats International Forum of Automotive Traffic Safety. 2011.
ZHAO Guifan, YANG Na, ZHU Yueying. Analysis of Vehicle Crash Compatability[C]// Infats International Forum of Automotive Traffic Safety. 2011.
[10] Ahmad M S, Langdon G S, Nurick G N, et al. A study on the response of single and double circular plates subjected to localized blast loading[J]. Latin American Journal of Solids and Structures, 2018,15(11),e135. DOI: 10.1590/1679-78255246.
[11] 刘燕红, 陈长海, 朱锡,等. 近距空爆载荷作用下叠层薄板抗爆机理数值分析[J]. 船舶力学, 2014, 000(007):821-833.
Liu Yanhong,Chen Changhai,Zhu Xi,et al. Numerical analysis of the blast-resistant mechanisms of multilayered thin plates under close-range air blast load[J]. Journal of Ship Mechanics, 2014, 000(007):821-833.
[12] Razasefat M, Mostofi T M, Ozbakkaloglu T. Repeated localized impulsive loading on monolithic and multi-layered metallic plates[J]. Thin-Walled Structures, 144(2019):106332. DOI: 10.1016/j.tws.2019.106332.
[13] 胡静,王陆军,胡昂.不同叠层顺序下的TC4薄板抗平头弹冲击性能[J].中国民航大学学报,2021,39(01):52-58.
HU Jing, WANG Lujun, HU Ang. Anti-impact Performance of TC4 Thin Plate with Different Laminated Sequences [J]. Journal of Civil Aviation University of China, 2021,39(01):52-58. 
[14] R.L Woodward, S.J Cimpoeru. A study of the perforation of aluminium laminate targets[J]. International Journal of Impact Engineering, 1998, 21(3):117-131.
[15] Norman Jones, et al. Impact loading of ductile rectangular plates[J]. Thin-Walled Structures, 50 (2012) 68–75. DOI:10.1016/j.tws.2011.09.006
[16] 朱浩, 朱亮, 陈剑虹. 应力三轴度和应变率对6063铝合金力学性能的影响及材料表征[J]. 材料科学与工程学报, 2007, 25(003):358-362.
Zhu Hao,Zhu Liang,Chen Jianhong. Influence of Stress Triaxiality and Strain Rate on the Mechanics Behavior of 6063 Aluminum Alloy and Material Characterization[J]. Journal of Materials Science&Engineering, 2007, 25(003):358-362.
[17] Wang Y , Qian X , Liew J Y R , et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact[J]. International Journal of Impact Engineering, 2014, 72(oct.):1-16.
PDF(4445 KB)

Accesses

Citation

Detail

Sections
Recommended

/