Cluster identification of acoustic emission parameters for bending-tensile damage of rock-concrete composite beams

CHEN Xudong1, GUO Yuzhu1, HU Liangpeng1, BAI Yin2, NING Yingjie3

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (19) : 274-281.

PDF(4057 KB)
PDF(4057 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (19) : 274-281.

Cluster identification of acoustic emission parameters for bending-tensile damage of rock-concrete composite beams

  • CHEN Xudong1, GUO Yuzhu1, HU Liangpeng1, BAI Yin2, NING Yingjie3
Author information +
History +

Abstract

In order to study the bending damage characteristics of the surrounding rock-concrete lining structure, four rock-concrete composite beams were prepared by selecting two types of rock (granite and black sandstone) and two types of concrete (fiber and fiberless). The composite beams were tested in four-point bending using MTS testing machine, and the bending damage process of the composite beams was monitored using acoustic emission (AE) technique. The damage localization results of acoustic emission showed that the main damage processes of the rock-concrete composite beams can be divided into four stages: concrete damage section, interface damage section, rock damage section and residual bearing section. To identify the damage types at each stage of flexural damage of composite beams, a Gaussian mixture model was used to cluster the acoustic emission parameters and compared with the conventional RA-AF analysis method. Compared with the conventional RA-AF analysis method, the Gaussian mixture model does not require artificially selected empirical parameters, and the identification of damage is more scientific and reasonable. In addition, the results of the Gaussian hybrid model analysis show that the rock-concrete composite beam mainly occurs in tensile damage (accounting for more than 87.9%), and only a small amount of shear damage is generated (accounting for less than 12.1%).
Key words: surrounding rock; concrete; acoustic emission; Gaussian mixture model; damage

Key words

surrounding rock / concrete / acoustic emission / Gaussian mixture model / damage

Cite this article

Download Citations
CHEN Xudong1, GUO Yuzhu1, HU Liangpeng1, BAI Yin2, NING Yingjie3. Cluster identification of acoustic emission parameters for bending-tensile damage of rock-concrete composite beams[J]. Journal of Vibration and Shock, 2022, 41(19): 274-281

References

[1] OZTURK H, TANNANT D. Influence of rock properties and environment conditions on thin spray-on liner adhesive bond[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7): 2711-2722.
[2] 马秋娟, 段宇, 宿辉, 等. 不同岩壁温度对围岩-喷射混凝土粘结强度的影响分析[J]. 水利水电技术, 2015, 46(09): 62-65.
MA Qiujuan, DUAN Yu, SU Hui, et al. Analysis on impacts of different rock wall temperatures on bonding strength between surrounding rock and shotcrete[J]. Water Resources and Hydropower Engineering, 2015, 46(09): 62-65.
[3] DONG W, WU Z, ZHOU X. Fracture mechanisms of rock-concrete interface: experimental and numerical[J]. Journal of Engineering Mechanics, 2016, 142 (7):4-16.
[4] 荣华, 王玉珏, 赵馨怡, 等. 不同粗糙度岩石-混凝土界面断裂特性研究[J]. 工程力学, 2019, 36(10): 96-103+163.
RONG Hua, WANG Yujue, ZHAO Xinyi, et al. Research on fracture characteristics of rock-concrete interface with different roughness[J]. Engineering Mechanics, 2019, 36(10): 96-103+163.
[5] 郭东明, 闫鹏洋, 凡龙飞, 等. 喷层混凝土-围岩组合体波动特性及动力特性研究[J]. 振动与冲击, 2018, 37(24): 85-91+136.
GUO Dongmin, YAN Pengyang, FAN Longfei, et al. A study on the stress wave characteristics and dynamic mechanical property of the sprayed concrete-surrounding rock combined body[J]. Journal of Vibration and Shock, 2018, 37(24): 85-91+136.
[6] 项伟, 刘珣. 冻融循环条件下岩石-喷射混凝土组合试样的力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2510-2521.
XIANG Wei, LIU Xun. Experimental study of mechanical properties of combined specimen with rock and shotcrete under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2510-2521.
[7] 王明年, 胡云鹏, 童建军, 等. 高温变温环境下喷射混凝土–岩石界面剪切特性及温度损伤模型研究[J]. 岩石力学与工程学报, 2019, 38(01): 63-75.
WANG Mingnian, HU Yunpeng, TONG Jianjun, et al. Experimental study on shear mechanical properties and thermal damage model of shotcrete-rock interfaces under variable high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(01): 63-75.
[8] 段东, 赵钰铤, 张睿哲, 等. 基于显微CT的泥岩单轴压缩破坏特征的声发射表征[J]. 振动与冲击, 2020, 39(16): 163-170+195.
DUAN Dong, ZHAO Yuting, ZHANG Ruizhe, et al. Acoustic emission characterization of uniaxial compression failure characteristics of mudstone based on Micro-CT[J]. Journal of Vibration and Shock, 2020, 39(16): 163-170+195.
[9] 赖于树, 熊燕, 程龙飞. 受载混凝土破坏全过程声发射信号频带能量特征[J]. 振动与冲击, 2014, 33(10): 177-182.
LAI Yushu, XIONG Yan, CHENG Longfei. Frequency band energy characteristics of acoustic emission signals in damage process of concrete under uniaxial compression[J]. Journal of Vibration and Shock, 2014, 33(10): 177-182.
[10] 赖于树, 熊燕, 程龙飞. 混凝土受载试验全过程声发射特性研究与应用[J]. 建筑材料学报, 2015, 18(03): 380-386.
LAI Yushu, XIONG Yan, CHENG Longfei. Study of characteristics of acoustic emission during entire loading tests of concrete and its application[J]. Journal of Building Materials, 2015, 18(03): 380-386.
[11] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(07): 2324-2332.
GAN Yixiong, WU Shunchuan, REN Yi, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters[J]. Rock and Soil Mechanics, 2020, 41(07): 2324-2332.
[12] 宋义敏, 邓琳琳, 吕祥锋, 等. 岩石摩擦滑动变形演化及声发射特征研究[J]. 岩土力学, 2019, 40(08): 2899-2906+2913.
SONG Yimin, DENG Linlin, LÜ Xiangfeng, et al. Study of acoustic emission characteristics and deformation evolution during rock frictional sliding[J]. Rock and Soil Mechanics, 2019, 40(08): 2899-2906+2913.
[13] LU Y, WANG L, LI Z, et al. Experimental study on the shear behavior of regular sandstone joints filled with cement grout[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1321-1336.
[14] 方杰, 姚强岭, 王伟男, 等. 含水率对泥质粉砂岩强度损伤及声发射特征影响的研究[J]. 煤炭学报, 2018, 43(S2): 412-419.
FANG Jie, YAO Qiangling, WANG Weinan, et al. Experimental study on damage characteristics of siltstone under water action[J]. Journal of China Coal Society, 2018, 43(S2): 412-419.
[15] 腾俊洋, 唐建新, 王进博, 等. 层状复合岩体损伤演化规律及分形特征[J]. 岩石力学与工程学报, 2018, 37(S1): 3263-3278.
TENG Junyang, TANG Jianxin, WANG Jinbo, et al. The evolution law of the damage of bedded composite rock and its fractal characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3263-3278.
[16] GUTENBERG B, RICHTER C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1994, 34(4):185-188.
[17] COLOMBO S, MAIN I G, FORDE M C. Assessing damage of reinforced concrete beam using "b-value" analysis of acoustic emission signals[J]. Journal of Materials in Civil Engineering, 2003, 15(3):280-286.
[18] RILEM Technical Committee. Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete[J]. Materials and Structures, 2010, 43(9): 1183-1186.
[19] REYNOLDS D A, ROSE R C. Robust text-independent speaker identification using Gaussian mixture speaker models[J]. IEEE Trans Speach & Audio Processing, 1995, 3(1):72-83.
[20] SAMBASIVAM S, THEODOSOPOULOS N. Advanced data clustering methods of mining web documents[J]. Issues in Informing Science & Information Technology, 2006, 3.
[21] GUO Y, CHEN X, YANG H, et al. Experimental study on direct tension behavior of concrete through combined digital image correlation and acoustic emission techniques[J]. Structural Concrete, 2019, 20(6): 2042-2055.
[22] BAYANE I, BRUHWILER E. Structural condition assessment of reinforced-concrete bridges based on acoustic emission and strain measurements[J]. Journal of Civil Structural Health Monitoring, 2020, 10(5): 1037-1055.
PDF(4057 KB)

Accesses

Citation

Detail

Sections
Recommended

/