A study on a dynamic constitutive model of 921A shipbuilding steel at high temperature and high strain rate

WU Haijun1,2,WANG Kehui2,LI Ming2,DUAN Jian2,ZHOU Gang2,ZHANG Qingming1

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (20) : 46-53.

PDF(1881 KB)
PDF(1881 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (20) : 46-53.

A study on a dynamic constitutive model of 921A shipbuilding steel at high temperature and high strain rate

  • WU Haijun1,2,WANG Kehui2,LI Ming2,DUAN Jian2,ZHOU Gang2,ZHANG Qingming1
Author information +
History +

Abstract

921A steel is an important ship structural steel in China. It is of great significance to study the dynamic mechanical properties of 921A steel at high temperature and high strain rate for ship structural protection design and safety evaluation. By using electronic universal testing machine and high temperature Hopkinson pressure bar with synchronous assembly system, the quasi-static and dynamic mechanical properties of 921A steel were studied over a wide range of strain rates (from 0.001s-1 to 4000s-1) and temperatures (from 25°C to 500°C). The results show that 921A steel has obvious strain rate strengthening effect and thermal softening effect. The strain rate strengthening effect decreases gradually with the increase of temperature, and the thermal softening effect is not sensitive to the change of strain rate. Considering the effects of strain, strain rate and temperature on mechanical properties, the Johnson-Cook constitutive model parameters of 921A steel were obtained by fitting experimental data. The average diameter of the projectile hole and the damage morphology of the double-layer 921A steel plate obtained by numerical simulation are in good agreement with the experimental results. It is verified that the parameters of the constitutive model can describe the dynamic mechanical behaviors of 921A steel under the condition of high-speed impact.
Key words: solid mechanics; 921A steel; dynamic mechanical properties; strain rate strengthening effect; thermal softening effect; Johnson-cook constitutive model

Key words

solid mechanics / 921A steel / dynamic mechanical properties / strain rate strengthening effect / thermal softening effect / Johnson-cook constitutive model

Cite this article

Download Citations
WU Haijun1,2,WANG Kehui2,LI Ming2,DUAN Jian2,ZHOU Gang2,ZHANG Qingming1. A study on a dynamic constitutive model of 921A shipbuilding steel at high temperature and high strain rate[J]. Journal of Vibration and Shock, 2022, 41(20): 46-53

References

[1] 王晓强, 朱锡. 舰船用钢的抗弹道冲击性能研究进展[J]. 中国造船, 2010, 51(1): 227-236.
WANG Xiaoqiang, ZHU Xi. Review on ballistic impact resistance of ship building steel[J]. Shipbuilding of China, 2010, 51(1): 227-236. (in Chinese)
[2] 邵军. 舰船用钢研究现状与发展[J]. 鞍钢技术, 2013, (4) :1-4.
SHAO Jun. Present status on researching shipbuilding steel and its development[J]. Angang Technology, 2013, (4) :1-4. (in Chinese)
[3] Meyers M A. 材料的动力学行为[M]. 张庆明, 刘彦, 黄风雷, 等译. 北京: 国防工业出版社, 2006: 225-230.
Meyers M A. Dynamic behavior of materials[M]. ZHANG Qingming, LIU Yan, HUANG Fenglei, et al, translated. Beijing: National Defense Industry Press, 2006: 225-230, 259-260. (in Chinese)
[4] 刘瑞堂, 姜风春. 船用 907A 钢动态断裂韧性测试研究[J]. 哈尔滨工程大学学报, 1998, 19(4): 18-23.
LIU Ruitang, JIANG Chunfeng. The study of dynamic fracture toughness measurement of 907A shipbuilding steel[J]. Journal of Harbin Engineering University, 1998, 19(4): 18-23. (in Chinese)
[5] 姜风春, 刘瑞堂, 刘殿魁. 船用921A钢动态断裂韧性测试研究[J]. 实验力学, 1999, 14(1): 96-101.
JIANG Chunfeng, LIU Ruitang, LIU Diankui. Study of dynamic fracture toughness measurement of 921A shipbuilding steel[J]. Journal of Experimental Mechanics, 1999, 14(1): 96-101. (in Chinese)
[6] 姜风春, 刘瑞堂, 张晓欣. 船用945钢的动态力学性能研究[J]. 兵工学报, 2000, 21(3): 257-260.
JIANG Chunfeng, LIU Ruitang, ZHANG Xiaoxin. A study on the dynamic mechanical behaviors of ship-building steel 945[J]. Acta Armamentarii, 2000, 21(3): 257-260. (in Chinese)
[7] 刘瑞堂, 姜风春, 张晓欣. 船用945钢动态断裂行为的温度效应[J]. 实验力学, 2001, 16(1): 113-118.
LIU Ruitang, JIANG Chunfeng, ZHANG Xiaoxin. The temperature effects on dynamic fracture behavior of 945 shipbuilding steel[J]. Journal of Experimental Mechanics, 2001, 16(1): 113-118. (in Chinese)
[8] 于兆斌, 张庄. 921A船板钢的动态断裂韧度KID研究[J]. 热加工工艺, 2006, 35(14): 28-29.
YU Zhaobin, ZHANG Zhuang. Study on dynamic fracture toughness of 921A ship-building steel[J]. Material & Heat Treatment, 2006, 35(14): 28-29. (in Chinese)
[9] 于兆斌, 张庄. 921A钢动态断裂韧性及韧-脆转变的分析[J]. 物理测试, 2006, 24(5): 5-7.
YU Zhaobin, ZHANG Zhuang. Dynamic fracture toughness and characteristic of ductile-brittle transition in steel 921A[J]. Physics Examination and Testing, 2006, 24(5): 5-7. (in Chinese)
[10] 朱锡. 921A钢动态屈服应力的实验研究[J]. 海军工程学院学报, 1991, (2): 43-48.
ZHU Xi. The experimental study of dynamic yielding stress on 921A steel[J]. Journal of Naval Academy of Engineering, 1991, (2): 43-48. (in Chinese)
[11] 张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性[J]. 高压物理学报, 2003, 17(4): 305-310.
ZHANG Lin, ZHANG ZuGen, QIN Xiaoyun, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305-310.
[12] 李继承, 陈小伟, 陈刚. 921A钢纯剪切帽状试件绝热剪切变形的数值模拟[J]. 爆炸与冲击, 2010, 30(4):361-369.
LI Jicheng, CHEN Xiaowei, CHEN Gang. Numerical simulations on adiabatic shear deformations of 921A steel pure shear hat-shaped specimens[J]. Explosion and Shock Waves, 2010, 30(4): 361-369. (in Chinese)
[13] 李继承, 陈小伟, 陈刚. 921A钢纯剪切帽状试件在SHPB实验中的动态变形[J]. 爆炸与冲击. 2010, 30(3):239-246. LI Ji-cheng, CHEN Xiao-wei, CHEN Gang. Dynamic deformation of 921A steel pure shear hat-shaped specimens in SHPB test[J]. Explosion and Shock Waves, 2010, 30(3): 239-246. (in Chinese)
[14] 伍星星, 刘建湖, 孟利平, 等. 金属材料试件在压缩、扭转、拉伸断裂过程中的应力状态变化及表征[J]. 高压物理学报, 2020, 34(5): 145-154.
WU Xingxing, LIU Jianhu, MENG Liping, et al. Variation of stress distribution in metal fracture process under compressive, torsional, and tensile loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 145-154. (in Chinese)
[15] 王子豪, 郑航, 文鹤鸣. 金属材料在极高应变率下的力学性能测试[J]. 高压物理学报, 2020, 34(2): 67-74.
WANG Zihao, ZHENG Hang, WEN Heming. Determination of the mechanical properties of metals at very high strain rates[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 67-74. (in Chinese)
[16] 徐磊, 卢永锦. 火灾爆炸作用下921A钢力学性能及本构关系[J]. 船舶工程, 2019, 41(1): 69-73.
XU Lei, LU Yongjin. Mechanical properties and constitutive relation of steel 921A under effects of fire and explosion[J]. Ship Engineering, 2019, 41(1): 69-73. (in Chinese)
[17] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术[M]. 北京: 科学出版社, 2013: 31-32.
LU Fangyun, CHEN Rong, LIN Yuliang, et al. Hopkinson Bar Techniques[M]. Beijing: Science Press, 2013: 31-32. (in Chinese)
[18] 李玉龙, 郭伟国. 微型Hopkinson杆技术[J]. 爆炸与冲击, 2006, 26(4): 303-308.
LI Yulong, GUO Weiguo. Miniature Hopkinson bar technique[J]. Explosion and Shock Waves, 2006, 26(4): 303-308. (in Chinese)
[19] 李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统[J]. 爆炸与冲击, 2005, 25(6): 487-492.
LI Yulong, SUO Tao, GUO Weiguo, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J]. Explosion and Shock Waves, 2005, 25(6): 487-492. (in Chinese)
[20] 周哲, 王琳, 安瑞, 等. 高温、高应变率下Ti6321合金的力学行为及本构模型[J]. 钛工业进展, 2020, 37(5): 1-6.
ZHOU Zhe, WANG Lin, AN Rui, et al. Mechanical behavior and constitutive model of Ti6321 alloy under high temperature and high strain rate[J]. Titanium Industry Progress, 2020, 37(5): 1-6.
[21] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. Hague: ISB, 1983: 541-547.
[22] 魏刚, 张伟, 邓云飞. 基于J-C模型的45钢本构参数识别及验证[J]. 振动与冲击, 2019, 38(5): 173-178.
WEI Gang, ZHANG Wei, DENG Yunfei. Identification and validation of constitutive parameters of 45 Steel based on J-C model[J]. JOURNAL OF VIBRATION AND SHOCK, 2019, 38(5): 173-178.
[23] 魏刚, 张伟, 邓云飞. 高强38CrSi钢力学性能测试及本构关系研究[J]. 振动与冲击, 2019, 38(18): 179-184.
WEI Gang, ZHANG Wei, DENG Yunfei. Mechanical property tests and the constitutive relation of high strength 38CrSi steel[J]. JOURNAL OF VIBRATION AND SHOCK, 2019, 38(18): 179-184.
PDF(1881 KB)

664

Accesses

0

Citation

Detail

Sections
Recommended

/