Finite-time trajectory tracking control of oscillatory-based manipulators based on an improved sliding mode reaching law

GUO Yufei1,2,3,XU Shengyue1,2,3,LI Huizi4,WANG Zhigang1,HAO Zhiqiang1

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (20) : 86-92.

PDF(1936 KB)
PDF(1936 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (20) : 86-92.

Finite-time trajectory tracking control of oscillatory-based manipulators based on an improved sliding mode reaching law

  • GUO Yufei1,2,3,XU Shengyue1,2,3,LI Huizi4,WANG Zhigang1,HAO Zhiqiang1
Author information +
History +

Abstract

To address the fast trajectory tracking problem of oscillatory-base manipulators, a novel sliding mode control based on an improved reaching law is proposed in this study. The nonlinear uncertain dynamical model of the oscillatory-base manipulator is obtained via Lagrange equations of the second kind, where the base’s term is regarded as uncertain external perturbations. A novel finite-time trajectory tracking control is designed based on an improved logarithmic-power reaching law and the fast terminal sliding surface. The effectiveness of the proposed control is verified theoretically and experimentally. Results demonstrate that the control effectively suppress the influence of the base oscillation, achieving the accurate trajectory tracking of the manipulator in a fast time. It can be concluded that the proposed control has good finite-time characteristic and robustness.
Key words: Oscillatory-base Manipulator; Sliding mode control; Finite-time control; Reaching law

Key words

Oscillatory-base Manipulator / Sliding mode control / Finite-time control / Reaching law

Cite this article

Download Citations
GUO Yufei1,2,3,XU Shengyue1,2,3,LI Huizi4,WANG Zhigang1,HAO Zhiqiang1. Finite-time trajectory tracking control of oscillatory-based manipulators based on an improved sliding mode reaching law[J]. Journal of Vibration and Shock, 2022, 41(20): 86-92

References

[1] Toda M. Robust Motion Control of Oscillatory-Base Manipulators[M]. Springer, Cham (ZG), 2016:1-13.
[2] Chu Z Y, Cui J, Sun F C. Fuzzy adaptive disturbance -observer-based robust tracking control of electrically driven free-floating space manipulator[J]. IEEE Systems Journal, 2012, 8(2): 343-352.
[3] Zhang J, Li W, Yu J, et al. Development of a virtual platform for telepresence control of an underwater manipulator mounted on a submersible vehicle[J]. IEEE Transactions on industrial Electronics, 2016, 64(2): 1716-1727.
[4] Sun N, Fang Y, Chen H, et al. Nonlinear antiswing control of offshore cranes with unknown parameters and persistent ship-induced perturbations: Theoretical design and hardware experiments[J]. IEEE Transactions on Industrial Electronics, 2017, 65(3): 2629-2641.
[5] 郭宇飞,侯保林. 传动柔性及负载变化弹药传输机械臂位置控制及柔性振动抑制[J]. 振动与冲击,2015,34(22):1-8.
GUO Yu-fei, HOU Bao-lin. Positioning control and elastic vibration suppressing of an ammunition transfer manipulator with transmission flexibility and payload uncertainty[J]. Journal of vibration and shock, 2015, 34(22): 1-8.
[6] Toda M. An H∞ control-based approach to robust control of mechanical systems with oscillatory bases[J]. IEEE transactions on robotics and automation, 2004, 20(2): 283-296.
[7] Küchler S, Mahl T, Neupert J, et al. Active control for an offshore crane using prediction of the vessel’s motion[J]. IEEE/ASME Transactions on Mechatronics, 2010, 16(2): 297-309.
[8] Chu Y, Li G, Zhang H. Incorporation of Ship Motion Prediction into Active Heave Compensation for Offshore Crane Operation[C]// 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). Kristiansand :IEEE, 2020: 1444-1449.
[9] Guo Y F, Hou B L. Implicit Lyapunov function-based tracking control of a novel ammunition autoloader with base oscillation and payload uncertainty[J]. Nonlinear Dynamics, 2017, 87(2): 741-753.
[10] 席宝成,郭宇飞,王志刚,等. 基于分段PD控制的振动基弹药传输机械臂轨迹跟踪控[J]. 振动与冲击,2021,40(4):283-292.
XI Bao-cheng, GUO Yu-fei, WANG Zhi-gang, et al. Trajectory tracking control of a vibration-based ammunition transmission manipulator based on piecewise PD control[J]. Journal of vibration and shock, 2021, 40(4): 283-292.
[11] Kim S, Choi S, Kim H J. Aerial manipulation using a quadrotor with a two DOF robotic arm[C]// 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013: 4990-4995.
[12] Ngo Q H, Hong K S. Sliding-mode antisway control of an offshore container crane[J]. IEEE/ASME transactions on mechatronics, 2010, 17(2): 201-209.
[13] Iwamura T, Toda M. Motion control of an oscillatory-base manipulator using sliding mode control via rotating sliding surface with variable-gain integral control[C]// 2013 American Control Conference. Washington D.C.: IEEE, 2013: 5742-5747.
[14] 刘金琨. 滑模变结构控制MATLAB仿真基本理论与设计方法[M].北 京: 清华大学出版社, 2015.
LIU Jin-kun. Sliding Mode Control Design and MATLAB Simulation the Basic Theory and Design Method[M]. Beijing: Tsinghua University Press, 2015.
[15] 高为炳.非线性系统的变结构控制[J].自动化学报,1989(05):408-415.
GAO Wei-bing. Variable structure control to nonlinear systems[J]. Acta Automatica Sinica,1989,15(5):408-415.
[16] 廖瑛,杨雅君,王勇. 滑模控制的新型双幂次组合函数趋近律[J]. 国防科技大学学报,2017,39(3):105-110.
LIAO Ying, YANG Ya-jun, WANG Yong. Novel double power combination function reaching law for sliding mode control[J]. Journal of National University of Defense Technology, 2017, 39(3): 105-110.
[17] 王要强,朱亚昌,冯玉涛,等. 永磁同步电机新型趋近律滑模控制策略[J]. 电力自动化设备,2021,41(1):192-197
WANG Yao-qiang, ZHU Ya-chang, FENG Yu-tao, et al. New reaching law sliding mode control strategy for permanent magnet synchronous motor[J]. Electric Power Automation Equipment,2021,41(1):192-197.
[18] 郑美茹,王圣,王丰,等. 基于分数阶次符号函数的永磁同步电机滑模控制技术[J]. 电工技术学报,2017,32(9):56-62.
ZHENG Mei-ru, WANG Sheng, WANG Feng, et al. Sliding mode control technology of permanent magnet synchronous motor based on fractional order symbol function[J]. Transactions of China Electrotechnical Society,2017,32(9):56-62.
[19] Pan J, Li W, Zhang H. Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control[J]. International Journal of Control,Automation and Systems, 2018,16(6):2878-2887.
[20] Wang A, Jia X, Dong S. A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2409-2412.
[21] 王坤,王建美,王芳,等. 非匹配不确定系统的滑模控制及在电机控制中的应用[J]. 控制理论与应用,2019,36(1):143-150.
WANG Kun, WANG Jian-mei, WANG Fang, et al. Sliding mode control for nonlinear system with mismatched uncertainties and application in motor control[J]. Control Theory and Applications, 2019, 36(1): 143–150.
[22] 高存臣,刘云龙,李云艳. 不确定离散变结构控制系统的趋近律方法[J]. 控制理论与应用,2009,26(7):781-785.
GAO Cun-chen,LIU Yun-long,LI Yun-yan. A reaching-law method for uncertain discrete variable-structure control systems[J]. Control Theory and Applications, 2009,26(7):781-785.
[23] Yu S, Yu X, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964.
[24] 张合新,范金锁,孟飞,等. 一种新型滑模控制双幂次趋近律[J]. 控制与决策,2013,28(2):289-293.
ZHANG He-xin, FAN Jin- suo, MENG Fei, et al. A new double power reaching law for sliding mode control[J]. Control and Decision, 2013, 28(2): 289-293.
[25] Zuo Z. Nonsingular fixed-time consensus tracking for second-order multi-agent networks[J]. Automatica, 2015, 54: 305-309.
PDF(1936 KB)

Accesses

Citation

Detail

Sections
Recommended

/