Noise reduction method for partial discharge signals based on improved threshold estimation and improved threshold function

LIU Zhijian,ZHAO Haoyi,LIU Hang,LUO Linglin,SONG Qi,LI Pengcheng

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (22) : 1-13.

PDF(2591 KB)
PDF(2591 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (22) : 1-13.

Noise reduction method for partial discharge signals based on improved threshold estimation and improved threshold function

  • LIU Zhijian,ZHAO Haoyi,LIU Hang,LUO Linglin,SONG Qi,LI Pengcheng
Author information +
History +

Abstract

A denoising method based on two aspects of improved optimal threshold estimation and improved threshold function is proposed. Firstly, in view of problems that the estimating value of traditional threshold method is relatively large, and the the single sequence sample entropy threshold method estimation is easy to fall into the local optimum, a comprehensive entropy model is established by combining the sample entropy of both noise and noise reduction sequences. Choosing the threshold under comprehensive entropy curvature inflection point as the optimization target, a bipartite variable step-size nonlinear search method is proposed to realize the rapid estimation of the optimal threshold. After that, aiming at the reconstruction oscillation and deviation problems of traditional wavelet threshold function, an improved threshold function combining soft and hard threshold features is proposed. To achieve thet continuous smooth transition of function curve in the critical threshold neighborhood, the quality factor parameters in this function are optimized by using a smooth transition number model. Simulation and test experiment results under application scenarios of the partial discharge ultrasonic pulse signal noise reduction in high-voltage equipment suggest that the proposed comprehensive entropy threshold estimation method can approximate the optimal threshold quickly and correctly. Besides, the improved threshold function also intrgrates the advantages of soft and hard threshold function, can suppress reconstruction oscillation and deviation, and further suppression the noise effectively with the premise of original signal’s effective information retaining, showing a good engineering application value.
Key words: noise reduction; threshold estimation; threshold function; comprehensive entropy; partial discharge

Key words

noise reduction / threshold estimation / threshold function / comprehensive entropy / partial discharge

Cite this article

Download Citations
LIU Zhijian,ZHAO Haoyi,LIU Hang,LUO Linglin,SONG Qi,LI Pengcheng. Noise reduction method for partial discharge signals based on improved threshold estimation and improved threshold function[J]. Journal of Vibration and Shock, 2022, 41(22): 1-13

References

[1] 王玉龙, 张晓虹, 李丽丽, 等. 基于超声波声压衰减效应的局部放电源定位与强度标定[J]. 物理学报, 2021, 70(9):  305-314.
WANG Yulong, ZHANG Xiaohong, LI Lili, et al. Localization and intensity calibration of partial discharge based on attenuation effect of ultrasonic sound pressure[J]. Acta Physica Sinica, 2021, 70(9): 305-314.
[2] 刘化龙, 胡钋. 序列二次规划–遗传算法及其在变压器局部放电超声定位中的应用[J]. 电网技术, 2015,39(1): 130-135.
LIU Hualong, HU Po. Sequential quadratic programming-genetic algorithm and its application in ultrasonic localization of partial discharge in power transformers[J]. Power System Technology, 2015,39(1): 130-135.
[3] 孙抗, 李万建, 张静. 含窄带噪声和白噪声的复杂染噪局部放电信号提取及应用[J]. 电子科技大学学报, 2021, 50(1): 14-23.
SUN Kang, LI Wanjian, ZHANG Jing. Denoising of complex noisy partial discharge pulses with narrowband interference and white noise[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(1): 14-23.
[4] 邹阳, 周求宽, 刘明军, 等. 局部放电特高频检测装置抗电磁干扰性能的量化评估方法研究[J]. 电工技术学报, 2020, 35(10): 2275-2282.
ZOU Yang, ZHOU Qiukuan, LIU Mingjun, et al. Research on quantitative evaluation on anti-electromagnetic interference capability of ultra high frequency partial discharge detection instrument[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2275-2282.
[5] GHORAT M, GHAREHPETIAN G B, LATIFI H, et al. A new partial discharge signal denoising algorithm based on adaptive dual-tree complex wavelet transform[J].  Instrumentation and Measurement, 2018, 67(10): 2262-2272.
[6] 王茜, 田慕琴, 宋建成, 等. 基于经验小波变换的振动信号特征量提取[J]. 振动与冲击, 2021, 40(16): 261-266.
WANG Xi, TIAN Muqin, SONG Jiancheng, et al. Feature extraction of vibration signals based on empirical wavelet transform[J]. Journal of Vibration and Shock, 2021, 40(16): 261-266.
[7] TANG J, ZHOU S Y, PAN C.  A denoising algorithm for partial discharge measurement based on the combination of wavelet threshold and total variation theory[J]. Instrumentation and Measurement, 2020, 69(6): 3428-3441.
[8] 司莉, 毕贵红, 魏永刚, 等. 基于RQA与SVM的声发射信号检测识别方法[J]. 振动与冲击, 2016, 35(2): 97-103.
SI Li, BI Guihong, WEI Yonggang, et al. Detection and identiffcation of acoustic emission signals based on recurrence quantification analysis and support vector machines[J]. Journal of Vibration and Shock, 2016, 35(2): 97-103.
[9] LI J, CHENG C G, JIANG T Y, et al. Wavelet de-noising of partial discharge signals based on genetic adaptive threshold estimation[J]. Dielectrics and Electrical Insulation, 2012, 19(2): 543-549.
[10] 李清泉, 秦冰阳, 司雯, 等. 混合粒子群优化小波自适应阈值估计算法及用于局部放电去噪[J]. 高电压技术, 2017, 43(5): 1485-1492.
LI Qingquan, QIN Bingyang, SI Wen, et al. Estimation algorithm for adaptive threshold of hybrid particle swarm optimization wavelet and its application in partial discharge signals de-noising[J]. High Voltage Engineering, 2017, 43(5): 1485-1492.
[11] 龙虹毓, 张晓勇, 胡晓锐, 等. 蚁群优化小波阈值算法用于变电设备状态信号提取[J]. 电工技术学报, 2015, 30(12): 422-428.
LONG Hongyu, ZHANG Xiaoyong, HU Xiaorui, et al. Extraction of condition signals of electrical plants by aco wavelet threshold estimation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 422-428.
[12] 陈克, 张晓冬, 李宁. 基于CEEMD与自适小波阈值组合降噪在OPAX方法的应用[J]. 振动与冲击, 2021, 40(16): 192-198.
CHEN Ke, ZHANG Xiaodong, LI Ning. Application of CEEMD and adaptiVe waVelet threshold combined noise reduction in the OPAX method[J]. Journal of Vibration and Shock, 2021, 40(16): 192-198.
[13] 常天庆, 李勇, 陈军伟, 等. 基于最大能量匹配与样本熵的小波降噪方法[J]. 计算机工程与应用, 2014, 50(21): 210-213.
CHANG Tianqing, LI Yong, CHEN Junwei, et al. Wavelet threshold de-noising method based on maximum energy matching and fast sample entropy[J]. Computer Engineering and Applications, 2014, 50(21): 210-213.
[14] 向北平, 周建, 倪磊, 等. 基于样本熵的改进小波包阈值去噪算法[J]. 振动.测试与诊断, 2019, 39(2): 410-415.
XIANG Beiping, ZHOU Jian, NI Lei, et al. Research on improved wavelet packet threshold denoising algorithm based on sample entropy[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(2): 410-415.
[15] 何勇, 张祥金, 姚宗辰. 改进样本熵最优小波包阈值选择算法在信号降噪中的应用[J]. 兵器装备工程学报, 2019, 40(3): 149-154.
HE Yong, ZHANG Xiangjin, YAO Zongchen. Improved optimal threshold selection algorithm applied to denoising[J]. Journal of Ordnance Equipment Engineering, 2019, 40(3): 149-154.
[16] 王普, 李天垚, 高学金, 等. 分层自适应小波阈值轴承故障信号降噪方法[J]. 振动工程学报, 2019, 32(3): 548-556.
WANG Pu, LI Tianyao, GAO Xuejin, et al. Bearing fault signal denoising method of hierarchical adaptive wavelet threshold function[J]. Journal of Vibration Engineering, 2019, 32(3): 548-556.
[17] 周建, 向北平, 倪磊, 等. 基于Shannon熵的自适应小波包阈值函数去噪算法研究[J]. 振动与冲击, 2018, 37(16): 206-211.
ZHOU Jian, XIANG Beiping, NI Lei, et al. A study on adaptive wavelet packet threshold function de-noising algorithm based on Shannon entropy[J]. Journal of Vibration and Shock, 2018, 37(16): 206-211.
[18] 吴艳, 张蓉竹. 小波阈值降噪算法在光电探测器信号处理中的应用[J]. 光子学报, 2019, 48(10): 150-157.
WU Yan, ZHANG Rongzhu. Application of wavelet threshold denoising algorithm in photodetector signal processing[J]. Acta Photonica Sinica, 2019, 48(10): 150-157.
[19] 王维博, 董蕊莹, 曾文入, 等. 基于改进阈值和阈值函数的电能质量小波去噪方法[J]. 电工技术学报, 2019, 34(2):  409-418.
WANG Weibo, DONG Ruiying, ZENG Wenru, et al. A wavelet de-noising method for power quality based on an improved threshold and threshold function[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 409-418.
[20] ZHONG J, BI X W, SHU Q, et al. Partial discharge signal denoising based on singular value decomposition and empirical wavelet transform[J]. Instrumentation and Measurement, 2020, 69(11): 8866-8873.
[21] 丁晓东, 高向东, 林少铎, 等. 焊缝成形测量小波软硬阈值折衷去噪法[J]. 焊接学报, 2021, 42(2): 51-55.
DING Xiaodong, GAO Xiangdong, LIN Shaoduo, et al. Study on soft-hard threshold compromise denoising method for weld forming measurement[J]. Transactions of The China Welding Institution, 2021, 42(2): 51-55.
[22] 黎锁平, 周勇, 周永强. 自适应小波阈值去噪算法在低空飞行声目标的应用[J]. 振动与冲击, 2017, 36(9): 153-158.
LI Suoping, ZHOU Yong, ZHOU Yongqiang. An adaptive wavelet shrinkage de-noising algorithm for low altitude flying acoustic targets[J]. Journal of Vibration and Shock, 2017, 36(9): 153-158.
[23] 李红延, 周云龙, 田峰, 等. 一种新的小波自适应阈值函数振动信号去噪算法[J]. 仪器仪表学报, 2015, 36(10): 2200-2206.
LI Hongyan, ZHOU Yunlong, TIAN Feng, et al. Wavelet-based vibration signal de-noising algorithm with a new adaptive threshold function[J]. Chinese Journal of Scientific Instrument, 2015, 36(10): 2200-2206.
[24] HUSSEIN R, SHABAN K B, EL-HANG A H. Wavelet transform with histogram-based threshold estimation for online partial discharge signal denoising[J]. Instrumentation and Measurement, 2015, 64(12): 3601-3614.
[25] 陈鹏, 赵小强. 基于优化VMD与改进阈值降噪的滚动轴承早期故障特征提取[J]. 振动与冲击, 2021, 40(13): 146-153.
CHEN Peng, ZHAO Xiaoqiang. Early fault feature extraction of rolling bearing based on optimized VMD and improved threshold denoising[J]. Journal of Vibration and Shock, 2021, 40(13): 146-153.
[26] SEO J, MA H, SAHA T. Probabilistic wavelet transform for partial discharge measurement of transformer[J]. Dielectrics and Electrical Insulation, 2015, 22(2): 1105-1117.
[27] 周风波, 李长庚, 朱红求. 基于提升小波变换的阈值改进去噪算法在紫外可见光谱中的研究[J]. 光谱学与光谱分析, 2018, 38(2): 506-510.
ZHOU Fengbo, LI Changgeng, ZHU Hongqiu. Research on threshold improved denoising algorithm based on lifting wavelet transform in UV-Vis spectrum[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 506-510.
[28] 李正明, 钱露先, 李加彬. 基于统计特征与概率神经网络的变压器局部放电类型识别[J]. 电力系统保护与控制, 2018, 46(13): 55-60.
LI Zhengming, QIAN Luxian, LI Jiabin. Type recognition of partial discharge in power transformer based on statistical characteristics and PNN[J]. Power System Protection and Control, 2018, 46(13): 55-60.
PDF(2591 KB)

563

Accesses

0

Citation

Detail

Sections
Recommended

/