A study on feature extraction and application for ship radiated noise’s generalized multiscale mathematical morphology feature

GUO Zheng1,2,ZHAO Mei1,HU Changqing1,NI Junshuai1,2

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (4) : 21-28.

PDF(2174 KB)
PDF(2174 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (4) : 21-28.

A study on feature extraction and application for ship radiated noise’s generalized multiscale mathematical morphology feature

  • GUO Zheng1,2,ZHAO Mei1,HU Changqing1,NI Junshuai1,2
Author information +
History +

Abstract

In order to extract effective features of ship radiated noise in a complex underwater acoustic environment stably, a nonlinear ship radiated noise feature extraction method named generalized multiscale pattern erosion spectrum entropy (GMPESE) was proposed based on mathematical morphology. With processing the ship radiated noise of Qiandao Lake and East China Sea, GMPESE method’s feasibility in different environments was verified, the influence of parameters’ selection on features’ discrimination was analyzed, the recognition performances of GMPESE method and multiscale sample entropy (MSE) method were also compared. Considering time-consuming, the signal duration required to extract stable features and the accuracy of target ship recognition in complex environments, the data processing results show that GMPESE feature extraction method performs better.

Key words

ship radiated noise / feature extraction / mathematical morphology / nonlinear

Cite this article

Download Citations
GUO Zheng1,2,ZHAO Mei1,HU Changqing1,NI Junshuai1,2. A study on feature extraction and application for ship radiated noise’s generalized multiscale mathematical morphology feature[J]. Journal of Vibration and Shock, 2022, 41(4): 21-28

References

[1] 陈哲, 李亚安. 基于多尺度排列熵的舰船辐射噪声复杂度特征提取研究[J]. 振动与冲击, 2019, 38(12): 225-230.
CHEN Zhe, LI Yaan. A study on complexity feature extraction of ship radiated signals based on a multi-scale permutation entropy method[J]. Journal of Vibration and Shock, 2019, 38(12): 225-230.
[2] 李余兴, 李亚安, 陈晓. 基于EEMD的舰船辐射噪声特征提取方法研究[J]. 振动与冲击, 2017, 36(05): 114-119.
LI Yuxing, LI Yaan, CHEN Xiao, Ships’ radiated noise feature extraction based on EEMD[J]. Journal of Vibration and Shock, 2017, 36(05): 114-119.
[3] 章新华, 张晓明, 林良骥. 船舶辐射噪声的混沌现象研究[J]. 声学学报, 1998(02): 134-140.
ZHANG Xinhua, ZHANG Xiaoming, LIN Liangji. Research on chaotic phenomena of noises radiated from ships[J]. Acta Acustica, 1998(02): 134-140.
[4] 陈向东, 宋爱国, 高翔, 等. 基于相空间重构理论的舰船辐射噪声非线性特性研究[J]. 声学学报, 1999(01): 12-18.
CHEN Xiangdong, SONG Aiguo, GAO Xiang, et al. The study of nonlinear features of ship radiated noise based on phase space reconstruction theory[J]. Acta Acustica, 1999(01): 12-18.
[5] 刘朝晖, 付战平, 李志舜, 等. 基于分形特征矢量的水下目标识别[J]. 系统工程与电子技术, 2005(05): 856-860.
LIU Zhaohui, FU Zhanping, LI Zhishun, et al. Underwater target recognition based on fractal feature vector[J]. Systems Engineering and Electronics, 2005(05): 856-860.
[6] 焦义民, 康春玉, 曾祥旭. 舰船辐射噪声非线性频谱特征提取与应用[J]. 舰船科学技术, 2016, 38(23): 65-68.
JIAO Yimin, KANG Yuchun, ZENG Xiangxu. Extraction and application in nonlinear spectrum feature of ship radiated noise[J]. Ship Science and Technology, 2016, 38(23): 65-68.
[7] 李余兴, 李亚安, 陈晓, 等. 一种基于样本熵与EEMD的舰船辐射噪声特征提取方法[J]. 水下无人系统学报, 2018, 26(01): 28-34.
LI Yuxing, LI Yaan, CHEN Xiao, et al. A feature extraction method of ship-radiated noise based on sample entropy and ensemble empirical mode decomposition[J]. Journal of Unmanned Undersea Systems , 2018, 26(01): 28-34.
[8] Serra J, Image analysis and mathematical morphology[M]. Academic Press, 1982: 536.
[9] 鄢小安. 基于数学形态学的滚动轴承故障诊断方法研究[D]. 南京: 东南大学, 2019.
YAN Xiaoan. Study of the method for rolling element bearing fault diagnosis based on mathematical morphology[D]. Nanjing: Southeast University, 2019.
[10] 高洪波, 刘杰, 李允公. 基于改进数学形态谱的齿轮箱轴承故障特征提取[J]. 振动工程学报, 2015, 28(05): 831-838.
GAO Hongbo, LIU Jie, LI Yungong. Fault feature extraction for gearbox bearing using improved pattern spectrum[J]. Journal of Vibration Engineering, 2015, 28(05): 831-838.
[11] 束洪春, 龚振, 田鑫萃, 等. 基于故障特征频带及形态谱的单相接地故障选线[J]. 电网技术, 2019, 43(03): 1041-1053.
SHU Hongchun, GONG Zhen, TIAN Xincui, et al. Single line-to-ground fault line selection based on fault characteristic frequency band and morphological spectrum[J]. Power System Technology, 2019, 43(03): 1041-1053.
[12] 王丽婕, 王勃, 王铮, 等. 基于数学形态学聚类与果蝇优化算法的风电功率短期预测[J]. 太阳能学报, 2019, 40(12): 3621-3627.
WANG Lijie, WANG Bo, WANG Zheng, et al. Wind power short-term prediction based on mathematical morphology cluster analysis and fruit fly optimization[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3621-3627.
[13] 郑直, 王宝中, 刘佳鑫, 等. 辛几何模态分解和广义形态分形维数的液压泵故障诊断[J]. 哈尔滨工程大学学报, 2020, 41(05): 724-730.
ZHENG Zhi, WANG Baozhong, LIU Jiaxin, et al.Hydraulic pump fault diagnosis method of symplectic geometry mode decomposition and generalized morphological fractal dimensions[J]. Journal of Harbin Engineering University, 2020, 41(05): 724-730.
[14] Ripley B.D, Matheron G. Random sets and integral geometry[J]. Journal of the Royal Statal Society, 1975, 139(2): 277-278.
[15] Costa M, Goldberger AL, Peng CK. Multiscale entropy to distinguish physiologic and synthetic RR time series[J]. Comput Cardiol, 2002, 29(29): 137-140.
[16] Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters, 2007, 89(6): 705 - 708.
[17] Zhang L, Xu J, Yang J, et al. Multiscale morphology analysis and its application to fault diagnosis[J]. Mechanical Systems & Signal Processing, 2008, 22(3): 597-610.
[18] Long Z, Guoliang X, Hesheng L, et al. Bearing Condition Identification Using Improved Multiscale Entropy and SVMs[J]. Key Engineering Materials, 2010, 419-420: 817-820.
PDF(2174 KB)

500

Accesses

0

Citation

Detail

Sections
Recommended

/