Dynamic response of mortar base plate-soil model under strong impact load based on modified D-P criterion

WANG Fengfeng, YANG Guolai, GE Jianli

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (5) : 214-220.

PDF(2289 KB)
PDF(2289 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (5) : 214-220.

Dynamic response of mortar base plate-soil model under strong impact load based on modified D-P criterion

  • WANG Fengfeng, YANG Guolai, GE Jianli
Author information +
History +

Abstract

At present, the soil calculation model selected when calculating the mortar base plate model in Abaqus is the D-P (Drucker-Prager) model that comes with the software, which has a certain gap with the actual situation. In order to improve the calculation accuracy of a mortar base plate-soil coupling model, this paper establishes a base-soil coupling finite element simulation model, and applies a modified D-P model to the soil yield in the mortar base plate-soil coupling calculation The criterion, the criterion introduces a corner model, considering the modification of the tensile-shear yield curve. In addition, in order to verify the application effect, the mortar base plate-soil dynamic characteristics test under strong impact load was designed and carried out and the dynamic response values of the plates and the measuring points in the soil were obtained. Numerical calculations and experimental test results show that the modified D-P yield criterion can better describe the experimental phenomenon, which can improve the calculation accuracy of the mortar base plate-soil coupling model and provided reference for the design of the base plate.

Key words

mortar base plate / strong impact load / D-P criterion / finite element / dynamic response

Cite this article

Download Citations
WANG Fengfeng, YANG Guolai, GE Jianli. Dynamic response of mortar base plate-soil model under strong impact load based on modified D-P criterion[J]. Journal of Vibration and Shock, 2022, 41(5): 214-220

References

[1] 唐治. 迫击炮设计[M]. 北京:兵器工业出版社,1994.
Tang Zhi. Mortar Design [M], Beijing: North Weapons Industry Press,1994.
[2] 何健,吴大林,马吉胜,冯文选,王宏凯. 基于改进土壤承压模型的履带车辆行驶振动特性仿真研究[J]. 振动与冲击, 2020, 39(12):57-62+77.
He Jian, Wu Dalin, Ma Jisheng, Feng Wenxuan, Wang Hongkai. A study on travel vibration characteristics of tracked vehicle based on improved soil pressure-sinkage model[J]. Journal of Vibration and Shock, 2020, 39(12):57-62+77.
[3] 俞茂宏, 刘继明, ODA Yoshiya,等. 论岩土材料屈服准则的基本特性和创新[J]. 岩石力学与工程学报, 2007, 26(9):1745-1757.
Yu Maohong, Liu Jiming, Oda Yoshiya, et al. Basic Characteristics and Innovation of yield criterion of geotechnical Materials[J]. Journal of Rock Mechanics and Engineering, 2007, 26(9): 1745-1757.
[4] 汪斌,朱杰兵,邬爱清,等. 高应力下岩石非线性强度特性的试验验证[J]. 岩石力学与工程学报, 2010, 29(3):542-548.
Wang Bin, Zhu Jie-bing, Wu Ai-qing, et al. Experimental validation of nonlinear strength property of rock under high geostress[J]. Chinese Journal of ock Mechanics and Engineering, 2010, 29(3): 542-548.
[5] 周小平,钱七虎,杨海清. 深部岩体强度准则[J]. 岩石力学与工程学报, 2008, 27(1):117-123.
Zhou Xiao-ping, Qian Qi-hu, Yang Hai-qing. Strength criteria of deep ock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 117-123.
[6] 李平恩,殷有泉. Drucker-Prager准则在拉剪区的修正[J]. 岩石力学与工程学报, 2010, 29(增刊1):3029—3033.
Li Ping-en, Yin You-quan. Modification of Drucker-Prager criterion in tensile shear region[J]. Chinese Journal of Rock  Mechanics  and  Engineering, 2010, 29(Supp.1): 3029-3033.
[7] Michel Aubertin, Li Li, Richard Simon, Salah Khalfi. Formulation and application of a short-term strength criterion for isotropic rocks[J]. Revue Canadienne De Géotechnique, 1999, 36(5):947-960.
[8] Li L, Gamache M, Aubertin M. Parameter determination for nonlinear stress criteria using a simple regression tool[J]. Canadian Geotechnical Journal, 2011, 37(6):1332-1347.
[9] 周永强,盛谦,刘芳欣等. 一种修正的Drucker-Prager屈服准则[J]. 岩土力学, 2016, 37(6):1657-1664.
Zhou Yongqiang, Sheng Qian, Liu Fangxin, et al. A modified Drucker-Prager yield criterion[J]. Rock and Soil Mechanics, 2016, 37(6):1657-1664.
[10] 周永强,盛谦,朱泽奇,付晓东. 基于修正Drucker-Prager准则的岩石次加载面模型[J]. 岩土力学, 2017(2):400-408.
Zhou Yong-qiang, Sheng Qian, Zhu Ze-qi, FU Xiao-dong. Subloading surface model for rock based on modified Drucker-Prager criterion[J]. Rock and Soil Mechanics, 2017(2):400-408.
[11] Alejano, L.R., Bobet, A., 2012. Drucker–Prager criterion. Rock Mech. Rock Eng. 45 (6), 995–999
[12] Weiji Liu,Xudong Qian,Tao Li,Yunlai Zhou,Xiaohua Zhu. Investigation of the tool-rock interaction using Drucker-Prager failure criterion[J]. Journal of Petroleum Science and Engineering, 2019, 173.
[13] J. Sadoghi Yazdi,F. Kalantary,H. Sadoghi Yazdi. Calibration of Soil Model Parameters Using Particle Swarm Optimization[J]. International Journal of Geomechanics, 2012, 12(3).
[14] Dong Hui Chen,Xin Lu,Xing Wang Chai,Bao Gang Wang,Hong Xia Guo,Yun Hai Ma. Design and Simulation of the New Bionic Soil Extruding Head[J]. Advanced Materials Research, 2012, 1673.
[15] 俞茂宏,昝月稳,范 文,等. 20世纪岩石强度理论的发展—纪念Mohr-Coulomb强度理论 100 周年[J]. 岩石力学与工程学报, 2000, 19(5):545–550.
Yu Mao-hong, Zan Yue- wen, Fan Wen, et al. Advances in strength theory of rock in 20  century[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5):487–490.
[16] 郑颖人,沈珠江,龚晓南. 广义塑性力学——岩土塑性力学原理[M]. 北京:中国建筑工业出版社, 2002.
Zheng Ying-ren, Shen Zhu-jiang, Gong Xiao-nan. Theory of generalized plastic mechanics: Geotechnical plastic mechanics theory[M]. Beijing: China Architecture & Building Press, 2002.
[17] 王沿朝,陈清军. 基于粒子群优化算法的软土场地Davidenkov模型参数拟合与应用[J]. 振动与冲击, 2019, 38(17):8-16.
Wang Yanchao, Chen Qingjun. Parametric fitting of soft soil sites’Davidenkov model based on PSO algorithm and its application[J]. Journal of Vibration and Shock, 2019, 38(17):8-16.
PDF(2289 KB)

441

Accesses

0

Citation

Detail

Sections
Recommended

/