The penetration overload signal contains complex signal components. The traditional signal processing methods can not extract the penetration overload characteristics effectively. A feature separation method of penetration overload signal based on variational mode decomposition (VMD) and blind source separation is proposed. First, the source signal is decomposed into a series of intrinsic mode functions using VMD. Then, the multi-dimensional observation signal is composed of the intrinsic mode function and the source signal. The number of source signals is estimated by singular value decomposition of the autocorrelation matrix. The correlation coefficients of each eigenmode function and the source signal are calculated, according to the number and correlation coefficient of source signals. The corresponding eigen mode function and source signal are selected to reconstruct the multi-channel observation signals. Finally, the joint approximate diagonalization of eigenmatrix is used to separate the multi-channel signals. Compared with traditional signal processing method, this method can effectively separate the penetration overload signal, the integral results can better reflect the actual penetration depth of projectile, which provides the basis for the structural design of fuze systems.
Key words
penetration overload signal /
variational mode decomposition /
blind source separation /
singular value decomposition /
reconstruction signal
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 李美亚. 硬目标侵彻引信模拟试验技术研究[D].西安:西安电子科技大学,2014.
LI Meiya. Research on simulation test technology of hard target penetration fuze [D]. Xi'an: Xi'an University of Electronic Science and technology, 2014.
[2] 张兵,石庚辰.侵彻硬目标识别技术中的机械滤波[J].探测与控制学报,2010,32(4):25-29.
ZHANG Bing,SHI Gengchen. Mechanical filtering in penetrating hard target recognition technology [J]. Journal of detection and control, 2010, 32 (4): 25-29.
[3] 黄娟,高静,张玲.基于小波去噪与HHT变换的轴承故障特征信号提取方法研究[J].机床与液压,2020,48(10):50-55.
Huang Juan, Gao Jing, Zhang Ling. Research on bearing fault feature signal extraction method based on wavelet denoising and HHT transform [J]. Machine tool and hydraulic, 2020, 48 (10): 50-55.
[4] 赵海峰,张亚,李世中,等.基于奇异值分解的侵彻过载信号降噪方法[J].振动、测试与诊断,2015,35(4):770-776.
Zhao Haifeng, Zhang Ya, Li Shizhong, Guo Yan. Noise reduction method of penetration overload signal based on singular value decomposition [J]. Vibration, test and diagnosis, 2015, 35 (4): 770-776.
[5] 毋文峰,陈小虎,苏勋家. 基于经验模式分解的单通道机械信号盲分离[J].机械工程学报,2011,47(4):12-16.
Wu Wenfeng, Chen Xiaohu, Su Xunjia. Blind separation of single channel mechanical signals based on empirical mode decomposition [J]. Journal of mechanical engineering, 2011, 47 (4): 12-16.
[6] 赵海峰,张亚,李世中.侵彻过载信号的欠定盲源分离与特征提取[J].仪器仪表学报,2019,40(10): 208-218.
Zhao Haifeng, Zhang Ya, Li Shizhong. Underdetermined blind source separation and feature extraction of penetration overload signal [J]. Acta Instrumenta Sinica, 2019, 40 (10): 208-218.
[7] 吴超,赵军,郭天太,等.EMD与JADE相结合的算法及验证[J].中国计量学院学报,2015,26(3):365-372.
Wu Chao, Zhao Jun, Guo Tiantai, LV Chenhuan. Algorithm and verification of combination of EMD and jade [J]. Journal of China Institute of metrology, 2015, 26 (3): 365-372.
[8] 刘军委. 基于盲源分离的滚动轴承复合故障诊断方法研究[D].重庆:重庆大学,2016.
Liu Junwei. Research on Composite Fault Diagnosis Method of rolling bearing based on blind source separation [D]. Chongqing: Chongqing University, 2016
[9] 郝如江,安雪君,史云林. 基于EMD和CICA的单通道盲源分离方法用于齿轮箱混合故障诊断研究[J].振动与冲击,2019,38(8):225-231.
Hao Rujiang, An Xuejun, Shi Yunlin.Single channel blind source separation method based on EMD and CICA for gearbox mixed fault diagnosis [J]. Journal of Vibration and shock, 2019, 38 (8): 225-231.
[10]BELOUCHRANI A,ABED-MERAIM K,CARDOSO JF,et al.A blind source separation technique using secon-d order statistics [J]. IEEE Transactions on Signal Proc-essing,1997,45(2):434-444.
[11]DRAGOMIRETSKIY K,ZOSSO D.Variational mode dec-omposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
[12]王康,程浩,张坤.基于变分模态分解的单通道信号盲源分离方法[J].科技通报,2019,35(2):138-149.
Wang Kang, Cheng Hao, Zhang Kun. Single channel signal blind source separation method based on variational mode decomposition [J]. Science and Technology Bulletin, 2019, 35 (2): 138-149.
[13]张琛,赵荣珍,邓林峰.基于变分模态分解奇异值熵的滚动轴承微弱故障辨识方法[J].振动与冲击,2018,37(21):87-91.
Zhang Chen, Zhao Rongzhen, Deng Linfeng. Rolling bearing weak fault identification method based on singular value entropy of variational mode decomposition [J]. Journal of Vibration and shock, 2018, 37 (21): 87-91.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}