Effects of different structures of blade suction surface on cavitation initiation of centrifugal pump

ZHAO Weiguo1,2, KANG Yandong1,2, LI Qinghua1,2, XUE Ziyang1,2

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (7) : 23-30.

PDF(2845 KB)
PDF(2845 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (7) : 23-30.

Effects of different structures of blade suction surface on cavitation initiation of centrifugal pump

  • ZHAO Weiguo1,2, KANG Yandong1,2, LI Qinghua1,2, XUE Ziyang1,2
Author information +
History +

Abstract

The occurrence of cavitation will affect the stable operation of the centrifugal pump. In order to suppress the occurrence of cavitation, a low specific speed centrifugal pump is used as the research object to carry out a non-constant value simulation. By arranging groove, transverse obstacle and discontinuous obstacle at the leading edge of the suction surface of the centrifugal pump blades, the influence of these three structures on the initial cavitation performance of the centrifugal pump was analyzed. The results show that the arrangement of the three structures has little effect on the head and efficiency of the centrifugal pump. Under the design conditions, after arranging the groove, the head drops by 1.7% and the efficiency increases by 2.4%. After the transverse obstacle and discontinuous obstacle are arranged, the head increases by 2.2% and 1.6%, and the efficiency drops by 2.6% and 2.3% respectively. In the initial stage of cavitation, after the three structures are arranged, it can induce the formation of a relatively high pressure area at the entrance of the impeller, greatly reduce the volume of cavity in the impeller, and inhibit the generation of cavitation. Among them, transverse obstacle has the best effect on suppressing cavitation of the impeller.

Key words

centrifugal pump / unsteady numerical simulation / groove / transverse obstacle / discontinuous obstacle / cavitation suppression

Cite this article

Download Citations
ZHAO Weiguo1,2, KANG Yandong1,2, LI Qinghua1,2, XUE Ziyang1,2. Effects of different structures of blade suction surface on cavitation initiation of centrifugal pump[J]. Journal of Vibration and Shock, 2022, 41(7): 23-30

References

[1] Chudina M. Noise as an indicator of cavitation in a centrifugal pump[J]. Acoustical Physics, 2003, 49(4): 463-474.
[2] WEI Yingsan, SHEN Yang, JIN Shuanbao, et al. Scattering effect of submarine hull on propeller non-cavitation noise[J]. Journal of Vibration and Sound, 2016, 370: 319-335.
[3] Yuan S Q, Liu W, Pan Z Y, et al. Review on rotating stall in pumps[J]. International Journal of Comprehensive Engineering, Part C: Engineering in Agriculture, 2(1): 196-207, 2013.
[4] 王松林,谭磊,王玉川.离心泵瞬态空化流动及压力脉动特性[J].振动与冲击,2013,32(22):168-173.
Wang Songlin, Tan Lei, Wang Yuchuan. Characteristics of transient cavitation flow and pressure fluctuation for a centrifugal pump [J]. Journal of Vibration and Shock, 2013, 32 (22) : 168-173.
[5] 谢山峰. 开缝叶片对低比转速离心泵性能影响的研究[D]. 江苏大学, 2016.
XIE Shanfeng. Study on Effect of Slotted Blades on Low Specific Speed Centrifugal Pump Performance[D]. Jiangsu University, 2016.
[6] 陈红勋,刘卫伟,见文,等. 基于流动控制技术的低比转速离心泵叶轮研发[J]. 排灌机械工程学报,2011, 29(6): 466-470.
CHEN Hongxun, LIU Weiwei, JIAN Wen, et al. Development of low specific-speed centrifugal pump impellers based on flow control technique[J]. Journal of Drainage and Irrigation Machinery Engineering,2011, 29(6): 466-470.
[7] 李随波,魏培茹,陈红勋. 缝隙引流叶片对低比转速离心泵性能的影响[J]. 上海大学学报(自然科学版), 2012, 18(4): 396-400.
LI Suibo, WEI Peiru, CHEN Hongxun. Effects of Low Specific Speed Centrifugal Pumps Performance with Gap Drainage Blades[J]. Journal of Shanghai University (Natural Science), 2012, 18(4): 396-400.
[8] Bouziad YA. Physical modeling of leading edge caviation: computational methodologies and application to hydraulic machinery[D].Doctoral Dissertation,École Polytechnique Fédéralede Lausanne (EPFL),2005.
[9] 潘中永,袁寿其. 泵空化基础[M].江苏大学出版社,2013.
PAN Zhongyong, Yuan Shouqi. Fundamentals of cavitation in pumps[M]. Jiangsu University Press, 2013.
[10] 李晓俊. 离心泵叶片前缘空化非定常流动机理及动力学特性研究[D]. 江苏大学,2013.
LI Xiaojun. Mechanism and Unsteady Dynamic Characteristics of Leading Edge Cavitation in a Centrifugal Pump[D]. Jiangsu University, 2013.
[11] Bachert B,Ludwig G,Stoffel B,et al. Experimental investigations concerning erosive aggressiveness of cavitation in a radial test pump with the aid of adhesive copper films[C].The Fifth International Symposium on Cavitation.Osaka,Japan,2003.
[12] 刘宜,李永乐,韩伟,等. 离心泵的进口几何参数对泵空化性能的影响[J].兰州理工大学学报,2011,37(01):50-53.
LIU Yi, LI Yongle, HAN Wei, et al. Effect of geometric parameters of centrifugal pump inlet on its cavitation perform ance[J]. Journal of Lanzhou University of Technology,2011,37(01):50-53.
[13] Angelo P, Lucio T, Angelo C, et al. Continuous spectrum of the rotordynamic four bladed inducer[J]. Journal of fluids engineering, 2011,133(11):1-9.
[14] 程效锐,符丽,包文瑞. 等螺距诱导轮的螺距变化对离心泵汽蚀性能的影响[J].兰州理工大学学报,2018,44(02):48-53.
CHENG Xiaorui, FU Li, BAO Wenrui. Effect of pitch change of equal-pitch inducer on cavitation performance of centrifugal pump[J]. Journal of Lanzhou University of Technology, 2018,44(02):48-53.
[15] Franc J P, Michel J M. Unsteady attached cavitation on an oscillating hydrofoil[J]. Journal of Fluid Mechanics, 1988, 193: 171-189.
[16] 王巍,唐滔,卢盛鹏,等. 主动射流控制水翼空化的数值模拟与分析[J]. 力学学报,2019, 051(006):1752-1760.
WANG Wei, TANG Tao, LU Shengpeng, et al. Numerical simulation and analysis of active jet control of hydrofoil  cavitation [J].Chinese Journal of Theoretical and Applied Mechanics,2019, 051(006):1752-1760.
[17] Kawanami Y, Kato H, Yamaguchi H, et al. Mechanism and control of cloud cavitation[J].Journal of Fluids Engineering, 1997, 119(4): 788-794.
[18] 赵伟国,赵国寿,咸丽霞,等. 离心泵叶片表面布置障碍物抑制空化的数值模拟与实验[J]. 农业机械学报,2017, 048(009):111-120.
ZHAO Weiguo, ZHAO Guoshou, XIAN Lixia, et al. Effect of Surface-fitted Obstacle in Centrifugal Pump on Cavitation Suppression[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 048(009): 111-120.
[19] 赵国寿. 离心泵内空化流动不稳定性及其控制研究[D].兰州理工大学,2018.
ZHAO Guoshou. Investigation of Cavitation instabilities and it's Control in a Centrifugal pump[D]. Lanzhou University of Technology, 2018.
[20] 张德胜, 吴苏青, 施卫东, 等. 不同湍流模型在轴流泵叶顶泄漏涡模拟中的应用与验证[J]. 农业工程学报, 2013, 29(13): 46-53.
ZHANG Desheng, WU Suqing, SHI Weidong, et al. Application and experiment of different turbulence models for simulating tip leakage vortex in axial flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13): 46-53.
[21] 李晓俊, 袁寿其, 潘中永, 等. 离心泵边界层网格的实现及应用评价[J]. 农业工程学报, 2012, 28(20): 67-72.
LI Xiaojun, YUAN Shouqi, PAN Zhongyong, et al. Realization and application evaluation of near-wall mesh in centrifugal pumps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 67-72.
[22] 张德胜,施卫东,张华,等. 不同湍流模型在轴流泵性能预测中的应用[J]. 农业工程学报, 2012, 28(1):66-71.
ZHANG Desheng, SHI Weidong, ZHANG Hua, et al. Application of different turbulence models for predicting performance of axial flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(1):66-71.
 [23] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. Aiaa Journal,1994,32.
[24] Reboud J L, Stutz B, Coutier O. Two phase flow structure of cavitation experiment and modeling of unsteady effects [C]// Proceedings of the 3rd International Symposium on Caviation,1998.
[25] Coutier-Delgosha O, Fortes-Patella R, Reboud J L. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation[C]// Asme Fedsm,June,New Orleans.2008.
[26] 张淼,薛瑞,皮漫,等. 修正的 SST k-ω模型在云状空化流动计算中的应用研究[J]. 西北水电,2014(4):76-81.
ZHANG Miao, XUE Rui, PI Man, et al. Study on Application of the Modified SST k-ω Model in Computation of Cloud Cavitating Flows [J]. Northwest Hydropower, 2014(4):76-81.
[27] Zwart P J, Gerber A G, Belamri t.  A two-phase flow model for predicting cavitation dynamics[C]//Fifth international conference on multiphase flow,Yokohama,Japan. 2004,152.
[28] 董亮,刘厚林. 叶片泵CFD数值计算实例详解[M]. 机械工业出版社,2015.
DONG Liang, LIU Houlin. Detailed explanation of CFD numerical calculation examples of vane pump[M]. China Machinery Industry Press, 2015.
PDF(2845 KB)

398

Accesses

0

Citation

Detail

Sections
Recommended

/