Sound absorption performance of composite grid sandwich structure with local resonance element

LUO Yingqin, LOU Jingjun, ZHANG Yanbing

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (7) : 291-296.

PDF(1913 KB)
PDF(1913 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (7) : 291-296.

Sound absorption performance of composite grid sandwich structure with local resonance element

  • LUO Yingqin, LOU Jingjun, ZHANG Yanbing
Author information +
History +

Abstract

A sound-absorbing structure of composite grid sandwich which is resistant to hydrostatic pressure is proposed. The grid spaces are filled with polyurethane matrix. The soft rubber coated iron ball is embedded in the matrix as a local resonance scatterer unit. The sound absorption performances of the structure under normal pressure and 3MPa static pressure are stable after compared by finite element method. The sound absorption mechanism was analyzed through discussing the relationship between sound absorption coefficient, average energy dissipation, the displacement and energy dissipation density fields. Finally, the genetic algorithm is used to optimize the broadband sound absorption performance of the structure. After optimization, the average sound absorption performance is increased by 150% and reaches 0.99 at a low frequency point where the thickness of the structure is less than λ/14, so that the small sized structure is realized to control the low frequency sound waves. It is expected to realize low-frequency broadband sound absorption design by adding more materials and structural parameters in the optimization model or filling different grid spaces with sound absorption microstructures that work at different low frequency points.

Key words

Composite grid sandwich structure / local resonant unit / the genetic algorithm / Static pressure / Underwater sound absorption performance

Cite this article

Download Citations
LUO Yingqin, LOU Jingjun, ZHANG Yanbing. Sound absorption performance of composite grid sandwich structure with local resonance element[J]. Journal of Vibration and Shock, 2022, 41(7): 291-296

References

[1] Sharma G S, Skvortsov A, Macgillivray I, et al. Underwater acoustic absorption using a periodically voided soft elastic medium[J]. Journal of the Acoustical Society of America,2016,140(4):3050-3050.
[2] Ivansson S M. Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes[J]. Acoust. Soc. Am.,2008,124:1974-1984.
[3] Méresse P, Audoly C, Croënne C, et al. Acoustic coatings for maritime systems applications using resonant phenomena[J]. Comptes Rendus Mécanique,2015,343(12):645-655.
[4] Sharma G S, Skvortsov A, Macgillivray I, et al. Acoustic performance of periodic steel cylinders embedded in a viscoelastic medium[J]. Journal of Sound & Vibration,2019.
[5] Yu L G, Li Z H, Wang R Q, et al. Analysis of underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell[J]. Acta Physica Sinica,2013,62(6):64301.
[6] Liu Z, Zhang X, Mao Y, et al. Locally Resonant Sonic Materials[J]. Science.,2000,289(5485):1734-1736.
[7] Zhao H, Wen J, Yu D, et al. Low-frequency acoustic absorption of localized resonances: Experiment and theory[J]. J. Appl. Phys.,2010,107(2):1734.
[8] Wen J, Zhao H, Lv L, et al. Effects of locally resonant modes on underwater sound absorption in viscoelastic materials[J]. Journal of the Acoustical Society of America,2011,130(3):1201.
[9] Meng H, Wen J, Zhao H, et al. Optimization of locally resonant acoustic metamaterials on underwater sound absorption characteristics[J]. J. Sound Vib.,2012,331(20):4406-4416.
[10] 吕林梅, 温激鸿, 赵宏刚, 等. 内嵌不同形状散射子的局域共振型黏弹性覆盖层低频吸声性能研究[J]. 物理学报,2012,61(21):293-300.
Lü L M,Wen J H,Zhao H G,et al. Low-frequency acoustic absorption of viscoelastic coating with various shaps of scatterers[J]. Acta Physica Sinica, 2012, 61(21):293-300.
[11] 张冲, 何世平, 易少强. 静压下球形空腔吸声覆盖层的建模与性能分析[J]. 船舶力学,2017,21(01):99-106.
Zhang Chong, He Shiping, Yishaoqiang. Model and absorption performance of anechoic coating embedding sphere cavities[J]. Journal of Ship Mechanics, 2017,21(01):99-106.
[12] 姚熊亮, 刘文贺, 刘庆杰, 等. 水深与腔型对隔声去耦瓦吸声系数的影响[J]. 哈尔滨工程大学学报,2007(06):605-610.
Yao Xiongliang, Liu Wenhe, Liu qingjie, et.al. Influence of depth and cavity shape on absorption coefficients of sound-isolating decoupled tiles,2007(06):605-610.
[13] 邹明松, 吴文伟, 余晓丽, 等. 静水压下声学覆盖层声阻抗研究[J]. 舰船科学技术,2013,35(03):57-60+68.
Zou Mingsong, Wu Wenwei, Yuxiaoli, et.al. Calculation of acoustic coating's Impedance under hydrostatic pressure[J]. Ship Science and Technology, 2013,35(03):57-60+68.
[14] 姜闻文, 陈光冶, 朱彦. 静水压变化下橡胶结构吸声性能的计算与分析[J]. 噪声与振动控制,2006(05):55-57+73.
Jiang Wenwen, Chen Guangzhi, Zhu yan. Computation and Analysis of Sound Absorption Performance of Rubber Structures under Variable Hydraulic Pressure[J]. Noise and Vibration Control,2006(05):55-57+73.
[15] 陶猛, 卓琳凯. 静水压力下吸声覆盖层的声学性能分析[J]. 上海交通大学学报,2011,45(09):1340-1344+1350.
Tao Meng, Zhuo Linkai. Effect of Hydrostatic Pressure on Acoustic Performance of Sound Absorption Coating[J]. Journal of Shanghai Jiaotong University,2011,45(09):1340-1344+1350.
[16] Panigrahi S N, Jog C S, Munjal M L. Multi-focus design of underwater noise control linings based on finite element analysis[J]. Applied Acoustics,2008,69(12):1141-1153.
[17] 黄怿行.薄型宽频隐身承载超结构的材料—结构—功能一体化设计、制备与表征[D].华南理工大学,2019.
Huang Yixing. Material-structure-function Integrated Design, Fabrication and Characterization of Thin Meta-structure with Broadband Microwave Absorption and Effective Load Bearing[D]. South China University of Technology, 2019.
[18] 郑青.新型格栅结构设计及力学性能研究[D].国防科技大学,2017.
Zheng Qing. Design and Mechanical Properties of Novel Lattice Structures[D]. National University of Defense Technology,2017.
[19] 王世勋, 石玉红, 张希, 等. 复合材料格栅结构研究进展与应用[J]. 宇航材料工艺,2017,47(01):5-12.
Wang Shixun, Shi Yuhong, Zhang Xi, et.al. Application and Research Progress of Composite Lattice Grids Structure[J].Aerospace Materials & Technology,2017,47(01):5-12.
[20] 石姗姗.先进复合材料格栅加筋壳体稳定性分析与优化设计[D].大连理工大学,2011.
Shi Shanshan.Optimal Design and Buckling Analysis of Advanced Composite Grid Stiffened Shell[D]. Dalian University of Technology,2011.
[21] 杜善义, 章继峰, 张博明. 先进复合材料格栅结构(AGS)应用与研究进展[J]. 航空学报,2007(02):419-424.
Du Shanyi, Zhang Jifeng, Zhang Boming.Overview of Application and Research on Advanced Composite Grid Structures[J]. Acta Aeronautica et Astronautica Sinica,2007(02):419-424.
[22] Jie Z, Honggang Z, Haibin Y, et al. On the accuracy and optimization application of an axisymmetric simplified model for underwater sound absorption of anechoic coatings[J]. Applied Acoustics,2019,145(2019):104-111.
[23] 杨海滨, 李岳, 赵宏刚, 等. 一种含圆柱形谐振散射体的黏弹材料低频吸声机理研究[J]. 物理学报,2013,62(15):223-229.
Yang H B,Li Y,Zhao H G,et al. Low-frequency acoustic absorption mechanism of a viscoelastic layer with resonant cylindrical scatterers[J]. Acta Physica Sinica,2013,62(15):223-229.
[24] Hennion, Hladky, Christine, et al. Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings[J]. Journal of the Acoustical Society of America,1991,90:3356-3367.
PDF(1913 KB)

Accesses

Citation

Detail

Sections
Recommended

/