The performance of cable’s multi-mode vibration control based on an eddy current damper

XIAO Xiao1,2,HUANG Zhiwen1,2,CHEN Zhengqing1,2,HUA Xugang1,2

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (8) : 17-24.

PDF(1633 KB)
PDF(1633 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (8) : 17-24.

The performance of cable’s multi-mode vibration control based on an eddy current damper

  • XIAO Xiao1,2,HUANG Zhiwen1,2,CHEN Zhengqing1,2,HUA Xugang1,2
Author information +
History +

Abstract

The performance of a new type of ball screw type axial eddy current damper (BS-ECD) on cable’s multi-mode vibration control is investigated. Firstly, the expression of BS-ECD’s equivalent linear damping coefficient is calculated based on the equal energy dissipation in every vibration periods, and then the expression of the cable’s additional modal damping ratio after installing the BS-ECD is derived by using the equivalent linearization theory. Based on this, the BS-ECD’s parameter optimization is carried out for the cable’s multi-mode vibration control. Meanwhile, the BS-ECD’s optimal critical speed and peak damping force as well as the cable’s additional modal damping ratio are obtained when the interested modes in the cable focus on 1-4 and 1-8, and the BS-ECD’s vibration control performance is evaluated based on these optimal parameters. Finally, the sensitivity of BS-ECD’s optimal parameters and displacement amplitude of damper’s location towards damper’s control performance is analyzed. The results show that there is a set of BS-ECD parameters, which can make any two modes of the cable’s additional damping ratio reach the maximum at the same time. When the working stroke of the damper is specified, the cable’s multi-mode vibration control performance of BS-ECD’s performance in cable’s multi-mode vibration control is better than that of both linear viscous dampers and nonlinear liquid viscous dampers counterparts after parameters optimization and BS-ECD’s control performance is not sensitive to changes in optimal parameters’ deviation. Like other nonlinear dampers, the BS-ECD’s additional modal damping ratio provided by BS-ECD is also dependent on amplitude obviously. When the working stroke of the damper deviates from the design value, its damping effect will be significantly reduced, which should be carefully studied in the follow-ups.

Key words

cable / vibration control / eddy current damper / nonlinear / parameter optimization

Cite this article

Download Citations
XIAO Xiao1,2,HUANG Zhiwen1,2,CHEN Zhengqing1,2,HUA Xugang1,2. The performance of cable’s multi-mode vibration control based on an eddy current damper[J]. Journal of Vibration and Shock, 2022, 41(8): 17-24

References

[1]. Fujino Y, Kimura K, Tanaka H. Cable vibrations and control methods. Wind resistant design of bridges in Japan. Springer; 2012. p. 197–229.
[2]. Yu, Z. and Y. L. Xu (1998). "MITIGATION OF THREE-DIMENSIONAL VIBRATION OF INCLINED SAG CABLE USING DISCRETE OIL DAMPERS — I. FORMULATION." Journal of Sound & Vibration 214(4): 659-673.
[3]. Xu, Y. L. and Z. Yu (1998). "MITIGATION OF THREE-DIMENSIONAL VIBRATION OF INCLINED SAG CABLE USING DISRETE OIL DAMPERS — II. APPLICATION." Journal of Sound & Vibration 214(4): 675-693.
[4]. Pacheco BM, Fujino Y, Sulekh A. Estimation curve for modal damping in stay cables with viscous damper. Journal of Structural Engineering (ASCE) 1993; 119(6):1961–1979.
[5]. 段元锋, 李频, 周仙通,等.斜拉索外置式黏滞阻尼器实用设计方法[J].中国公路学报,2015,28(11):46-51+59.
Duan Yuanfeng, Li Pin, Zhou Xiantong, et al. Practical design method for external viscous damper of stay cable[J].China Journal of Highway and Transport, 2015,28(11):46-51+59.
[6]. Krenk S. Vibrations of a taut cable with an external damper. ASME Journal of Applied Mechanics 2000; 67:772–776.
[7]. Wang X Y , Ni Y Q , Ko J M , et al. Optimal design of viscous dampers for multi-mode vibration control of bridge cables[J]. Engineering Structures, 2005, 27( 5):792-800.
[8]. 王修勇, 陈政清, 倪一清,等.斜拉桥拉索磁流变阻尼器减振技术研究[J].中国公路学报,2003(02):53-57.
Wang Xiuyong, Chen Zhengqing, Ni Yiqing, et al. Study of mitigating cables vibration on cable-stayed bridges using magnetorheological(MR) dampers[J].China Journal of Highway and Transport, 2003(02):53-57.
[9]. Duan Y F, Ni Y Q, Ko J M. State‐derivative feedback control of cable vibration using semiactive magnetorheological dampers[J]. Computer‐Aided Civil and Infrastructure Engineering, 2005, 20(6): 431-449.
[10]. 禹见达, 陈政清, 王修勇,等. 拉索-MR阻尼器系统的半主动控制试验[J]. 中国公路学报, 2009(04):72-77.
Yu Jianda, Chen Zhengqing, Wang Xiuyong, et al. Experimental of semi-active control of cable-MR damper system[J]. China Journal of Highway and Transport, 2009(04):72-77.
[11]. Wang W, Hua X, Wang X, et al. Mechanical behavior of magnetorheological dampers after long-term operation in a cable vibration control system[J]. Structural Control and Health Monitoring, 2019, 26(1): e2280.
[12]. Javanbakht M , Cheng S , Ghrib F . Refined damper design formula for a cable equipped with a positive or negative stiffness damper[J]. Structural Control and Health Monitoring, 2018, 25(10):e2236.1-e2236.23..
[13]. Shi X , Zhu S , Spencer B F . Experimental Study on Passive Negative Stiffness Damper for Cable Vibration Mitigation[J]. Journal of Engineering Mechanics, 2017, 143(9):04017070.
[14]. Lu L , Duan Y F , Spencer B F J , et al. Inertial mass damper for mitigating cable vibration[J]. Structural Control and Health Monitoring, 2017, 24(10):1-12..
[15]. Chen L, Nagarajaiah S, Sun L. A unified analysis of negative stiffness dampers and inerter-based absorbers for multimode cable vibration control[J]. Journal of Sound and Vibration, 2021, 494: 115814.
[16]. Main J A , Jones N P . Free Vibrations of Taut Cable with Attached Damper. II: Nonlinear Damper[J]. Journal of Engineering Mechanics, 2002, 128(10):1072-1081.
[17]. Krenk S , Hogsberg J R . Damping of Cables by a Transverse Force[J]. Journal of Engineering Mechanics, 2005, 131(4):340-348.
[18]. Hoang N , Fujino Y . Multi-mode control performance of nonlinear dampers in stay cable vibrations[J]. Structural Control & Health Monitoring, 2010, 16(7-8):860-868.
[19]. 周海俊, 孙利民, 时晨. 摩擦型阻尼器的斜拉索减振试验研究[J]. 同济大学学报(自然科学版), 2006, 34(007):864-868.
Zhou Haijun, Sun Limin, Shi Chen. A full-scale experimental study on cable vibration mitigation with friction damper[J]. Journal of Tongji University (Natural Science), 2006, 34(7):864-868.
[20]. 王慧萍, 孙利民, 胡晓伦. 斜拉索-摩擦型阻尼器系统的阻尼特性分析[J]. 振动与冲击, 2016, 35(11):213-217.
WANG Huiping,SUN Limin,HU Xiaolun.Damping characteristics of a stayed cable-friction damper system [J]. Journal of Vibration and Shock, 2016,35(11):213-217. (in Chinese)
[21]. Chen L, Sun L. Steady-state analysis of cable with nonlinear damper via harmonic balance method for maximizing damping[J]. Journal of Structural Engineering, 2017, 143(2): 04016172.
[22]. Sodano H A, Bae J S. Eddy current damping in structures[J]. Shock and Vibration Digest, 2004, 36(6): 469.
[23]. Canova A , Vusini B . Design of axial eddy-current couplers[J]. Industry Applications IEEE Transactions on, 2003, 39(3):725-733.
[24]. 黄智文. 电涡流阻尼器理论研究及其在桥梁竖向涡振控制中的应用[D].湖南大学,2016.
[25]. Zhang H Y ,Chen Z Q , Hua X G , et al. Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control[J]. Mechanical Systems and Signal Processing, 2020, 145:106879.
[26]. Liang L, Feng Z, Chen Z. Seismic Control of SDOF Systems with Nonlinear Eddy Current Dampers[J]. Applied Sciences, 2019, 9(16): 3427.
[27]. Wouterse J H. Critical torque and speed of eddy current brake with widely separated soft iron poles. IEE Proceedings B—Electric Power Applications, 1991, 138(4): 153-158.
[28]. Terenzi G. Dynamics of SDOF systems with nonlinear viscous damping[J]. Journal of Engineering Mechanics, 1999, 125(8): 956-963.
[29]. Wen Hsiung Lin, Chopra A K . Earthquake response of elastic SDF systems with non-linear fluid viscous dampers[J]. Earthquake Engineering & Structural Dynamics, 2010, 31(9):1623-1642.
PDF(1633 KB)

Accesses

Citation

Detail

Sections
Recommended

/