Experimental analysis on energy absorption effect of energy absorption device for a suspension type crossing frame

MENG Fanhao,XIA Yongjun,MA Yong,WAN Jiancheng

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (8) : 45-54.

PDF(1988 KB)
PDF(1988 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (8) : 45-54.

Experimental analysis on energy absorption effect of energy absorption device for a suspension type crossing frame

  • MENG Fanhao,XIA Yongjun,MA Yong,WAN Jiancheng
Author information +
History +

Abstract

For improving the impact resistance performance of the suspension crossing frame, the hydraulic energy absorption device suitable for the crossing frame is designed based on the load-bearing characteristics of the suspension crossing frame under the accident state, and the energy absorption effect verification test is carried out. Firstly, based on the analysis of the load-bearing characteristics of the suspension crossing frame under accident conditions, several different types of energy absorption principles are compared, and finally the hydraulic energy absorption device is selected for design. Then, the energy absorption effect of the energy absorption device is tested through the small-scale vertical state test of the load-bearing cable of the suspension frame. The result shows the energy absorption effect of the hydraulic energy absorption device is 71.05%. In order to further verify the energy absorption effect of the energy absorption device under real working conditions, the large-scale impact test technology is carried out, and the impact response law of the load-bearing cable with and without energy absorption device is tested. The experimental results show that under the conditions of 110m span, 0.5T heavy load and 0.5m impact height, the energy absorption effect of the hydraulic energy absorption device reaches 32.10%, which can effectively improve the impact resistance of the suspension type crossing frame.

Key words

viscous energy absorption / hydraulic energy absorption device / large scale simulation impact test / suspension type crossing frame

Cite this article

Download Citations
MENG Fanhao,XIA Yongjun,MA Yong,WAN Jiancheng. Experimental analysis on energy absorption effect of energy absorption device for a suspension type crossing frame[J]. Journal of Vibration and Shock, 2022, 41(8): 45-54

References

[1] 马勇, 夏拥军, 孟凡豪. 落线高度对悬索式跨越架在断线事故下的影响分析[J]. 噪声与振动控制, 2020, 40(05): 59-64.
Ma Y, Xia Y J, Meng F H. Analysis of the influence of dropping wire height on anti-shock performance of suspension span frames in the incidental wire break condition[J]. Noise and Vibration Control, 2020, 40(05): 59-64.
[2] 夏拥军, 马勇, 张荣旺等. 悬索式跨越架用纤维绳动力学参数试验及理论研究[J].噪声与振动控制, 2020, 40(03): 64-67+249.
Xia Y J, Ma Y, Zhang R W. Experimental and theoretical study on the dynamic parameters of fiber rope in suspension span frames [J]. Noise and Vibration Control, 2020, 40(03): 64-67+249.
[3] 彭程, 陈永祁. 一种高层结构抗风新体系-液体粘滞阻尼器和调谐质量阻尼器(TMD)联合使用的探索[J]. 建筑结构, 2013, s2:720-725.
Peng C, Chen Y Q. Discovery for a new system, using fluid viscous damper and tuned mass damper (TMD) together in high-rise structure for wind-induced vibration reduction [J]. Building Structure, 2013, s2:720-725.
[4] 卢桂臣, 胡雷挺. 西堠门大桥液体粘滞阻尼器参数分析[J]. 世界桥梁, 2005, 2:45-47.
Lu G C, Hu L T. Analysis of parametric sensitivity of fluid viscous dampers for Xihoumen Bridge[J]. World Bridge, 2005, 2:45-47.
[5] 赵京东, 王金昌等. 基于半主动控制的小天体着陆器缓冲器的研究 [J]. 振动与冲击, 2010, 29(8):78-80.
Zhao J D, Wang J C. Research on buffer of asteroid lander based on semi-active control [J]. Journal of Vibration & Shock, 2010, 29(8):78-80.
[6] 张晶. 液体粘滞阻尼器在加固改造工程中的应用[J]. 工程抗震与加固改造, 2008, 30(1):40-42.
Zhang J. The Application of viscous fluid damper in strengthening engineering[J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(1):40-42.
[7] 傅武军, 朱昌明, 张长友. 电梯用油压缓冲器的动态仿真和试验分析[J]. 振动与冲击, 2003, 22(4):80-87.
Fu W J, Zhu C M, Zhang C Y. Experimental analysis and dynamic simulation of hydraulic buffer used in elevator system[J]. Journal of Vibration & Shock, 2003, 22(4):80-87.
[8] 周云. 金属耗能减震结构设计理论及应用[M]. 武汉:武汉理工大学出版社,2013.
Zhou Y. Design theory and application of metal energy dissipation structure [M]. Wuhan University of Technology Press, Wuhan, China, 2013.
[9] 郝鹏飞,张锡文等. 小型液压缓冲器的动态特性分析[J]. 机械工程学报, 2003, 03(39):155-158.
Hao P F, Zhang X W. Dynamic characteristic analysis of small hydraulic buffer [J]. Chinese Journal of Mechanical Engineering, 2003, 03(39):155-158.
[10] 蔡文军,王平等. 一种液压阻尼器的结构及阻尼性能分析[J]. 机床与液压, 2006, 39:149-153.
Cai W J, Wang P. The structure and analysis on damping characteristic of a hydraulic damper [J]. Machine Tool & Hydraulics, 2006, 39:149-153.
[11] 冯加和, 董奇, 张刘成等. 聚脲弹性体在爆炸防护中的研究进展[J]. 含能材料, 2020, 28(04): 277-290.
Feng J H, Dong Q, Zhang L C. Review on using polyurea elastomer for enhanced blast⁃mitigation[J]. Chinese Journal of Energetic Materials, 2020, 28(04): 277-290.
[12] 匡锐. 一种橡胶结构的缓冲制动吸能有限元分析[J]. 机电设备, 2018, 35(06): 59-64.
Kuang R. Finite element analysis of buffer brake energy absorption of a kind of rubber structure[J]. Mechanical and Electrical Equipment, 2018, 35(06): 59-64.
[13] 宋彬, 黄正祥, 翟文等. 聚脲弹性体夹芯防爆罐抗爆性能研究[J]. 振动与冲击, 2016, 35(07): 138-144.
Song B, Huang Z X, Zhai W. Anti-detonation properties of explosion-proof pots made of sandwich structures with polyurea elastomer[J]. Journal of Vibration & Shock, 2016, 35(07): 138-144.
[14] A. S. Hoback. Optimization of singular problems [J]. Structural Optimization, 1996. 12:94-97.
[15] Hou C Y. Fluid dynamics and behavior of nonlinear viscous fluid dampers [J]. Journal of Structural Engineering, 2008, 134 (1):56-63.
PDF(1988 KB)

Accesses

Citation

Detail

Sections
Recommended

/