Numerical simulation of multiphase flow field and trajectory characteristics of high-speed spinning projectile entry water in wave

LI Zhitao1,2,ZHAO Shiping1,2,LU Bingju1,2,YU Yong3

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (8) : 72-78.

PDF(4384 KB)
PDF(4384 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (8) : 72-78.

Numerical simulation of multiphase flow field and trajectory characteristics of high-speed spinning projectile entry water in wave

  • LI Zhitao1,2,ZHAO Shiping1,2,LU Bingju1,2,YU Yong3
Author information +
History +

Abstract

Based on the overlapping grid technique and 6-DOF algorithm, the numerical simulation of the water entry process of a high-speed pinning projectile in waves is carried out. The cavitation shape, trajectory characteristics and hydrodynamic load characteristics of the projectile at different positions of wave surface, such as wave crest, wave node 1, wave trough and wave node 2, are analyzed. The results show that the projectile body experiences water impact, cavitation formation, supercavitating and wetting under four cases, among which the tail of wave node 2 collides with the cavitation first, and the tail of wave node 1 collides with the cavitation last. At the end of the simulation, the lateral displacement and velocity change from large to small are wave node 2, wave crest, wave trough and wave node 1. In the initial stage of the four cases, the force and moment coefficients magnitude of the projectile sailing in the cavity are small. In the later stage of water entry, the surface of the projectile is wet in a large area. The force and moment coefficients under different cases are quite different. The nominal entry-water angle is 25 degree and the same under the four cases, but due to the existence of wave surface, the actual entry-water angle of the projectile change. The effective entry-water angle of the projectile from small to large are wave node 2, wave crest, wave trough and wave node 1, and the values are 10.3094 degree, 25.0032 degree, 25.0098 degree and 39.6620 degree respectively.

Key words

high-speed spinning projectile / wave entry / overlapping grid / wave-generation method of defining inlet boundary conditions;

Cite this article

Download Citations
LI Zhitao1,2,ZHAO Shiping1,2,LU Bingju1,2,YU Yong3. Numerical simulation of multiphase flow field and trajectory characteristics of high-speed spinning projectile entry water in wave[J]. Journal of Vibration and Shock, 2022, 41(8): 72-78

References

[1] 储慧林. 鱼雷在波浪中入水的数值模拟[D]. 镇江:江苏科技大学, 2014.
CHU Huilin. Numerical simulation of torpedo entering water in wave [D]. Zhenjiang: Jiangsu University of Science and Technology, 2014.
[2] 王平, 袁帅, 张宁川, 等. 楔形体在波浪中自由入水的数值模拟[J]. 海洋工程, 2017, 35(5): 42-50.
WANG Ping, YUAN Shuai, ZHANG Ningchuan, et al. Numerical study of the free water-entry wedge in wave [J]. The Ocean Engineering, 2017, 35(5): 42-50.
[3] 杨衡, 孙龙泉, 刘莹, 等. 波流作用下圆柱体入水特性的三维数值模拟研究[J]. 船舶力学, 2015, 19(10): 1186-1196.
YANG Heng, SUN Longquan, LIU Ying, et al. 3D numerical simulation on water entry of cylindrical under wave and stream action [J]. Journal of Ship Mechanics, 2015, 19(10): 1186-1196.
[4] 王文华, 王言英. 圆柱在波浪中入水的数值模拟[J]. 上海交通大学学报, 2010, 10(40): 1393-1399.
WANG Wenhua, WANG Yanying.. Numerical study on cylinder entering water in wave [J]. Journal of Shanghai Jiaotong University, 2010, 44(10): 1393-1399.
[5] 金禹彤, 陈吉昌, 卢昱锦, 等. 楔形体入波浪水面数值模拟[J]. 航空学报, 2019, 40(10): 122854-1-12284-13.
JIN Yutong, CHEN Jichang, LU Yujin, et al. Numerical simulation of wedge impacting on wavy water [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122854-1-122854-13.
[6] 邹丽, 李振浩, 孙铁志, 等. 楔形物体在静水与波浪中自由入水砰击试验研究[J]. 海洋工程, 2019, 37(1): 1-11.
ZOU Li, LI Zhenhao, SUN Tiezhi, et al. Experimental study on free fall slamming of wedge-shaped objects under still water and waves conditions [J]. The Ocean Engineering, 2019, 37(1): 1-13.
[7] 侯昭. 圆柱低速倾斜入水过程非定常多相流及漩涡特性[D]. 大连: 大连理工大学, 2019.
HOU Zhao. Investigation of unsteady and multiphase flow characteristics and vortex structures on low speed oblique water entry of a cyclinder [D]. Dalian: Dalian University of Technology, 2019.
[8] 郭张霞, 罗鹏, 范光明, 等. 基于数值波浪的回转体倾斜入水研究[J]. 火炮发射与控制学报, 2020, 1: 29-32.
GUO Zhangxia, LUO Peng, Fan Guangming, et al. Research on oblique intrusion water of rotary body based on numerical wave [J]. Journal of Gun Launch and Control, 2020, 1: 29-32.
[9] 朱仁庆, 陆嘉文, 纪仁玮, 等. 波浪作用下三维楔形体入水砰击数值模拟[J]. 舰船科学技术, 2019, 41(7): 6-11.
ZHU Renqing, LU Jiawen, JI Renwei, et al. Numerical simulation of three-dimensional wedges entering the water under wave action [J]. Ship Science and Technology, 2019, 41(7): 6-11.
[10] 刘邦威. 波浪中三维锥体自由入水的全非线性数值模拟研究[D]. 哈尔滨:哈尔滨工程大学, 2020.
LIU Bangwei. Fully nonlinear simulation for free water entry of 3D cones into Stokes waves [D]. Harbin: Harbin Engineering University, 2020.
[11] 史崇镔, 张桂勇, 孙铁志, 等. 跨介质航行器波浪环境入水流场演变和运动特性研究[J]. 宇航总体技术, 2020, 4(3): 34-44.
SHI Chongbin, ZHANG Guiyong, SUN Tiezhi, et al. Study on the flow field evolution and motion characteristics of trans-media vehicle under wave conditions [J]. Astronautical  Systems Engineering Technology, 2020, 4(3): 34-44.
[12] 赵庆新, 丁忠军. 波浪条件下空投AUV入水数值模拟[J]. 华中科技大学学报(自然科学版), 2021, 49(1): 128-132.
ZHAO Qingxin, DING Zhongjun. Numerical simulation of water entry of an air-dropped AUV under wave conditions [J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2021, 49(1): 128-132.
[13] 陈晨, 魏英杰, 王聪, 等. 射弹跨声速入水初期阶段多相流场特性数值研究[J]. 振动与冲击, 2019, 38(6): 46-53.
CHEN Chen, WEI Yingjie, WANG Cong, et al. Numerical analysis of the multiphase flow characteristics in the initial period of water-entry of a projectile at transonic speed [J]. Journal of Vibration and Shock, 2019, 38(6): 46-53.
[14] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社,2012.
YAN Chao. Computational fluid dynamics method and its application [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2012.
[15] 杨晓彬, 许国冬. 基于重叠网格法的飞机水上降落水动力砰击载荷研究[J]. 振动与冲击, 2020, 39(2): 57-63.
YANG Xiaobin, XU Guodong. Identification of hydrodynamic impact loads during the airplane ditching based on overset grid method [J]. Journal of Vibration and Shock, 2020, 39(2): 57-63.
[16] 郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
GUO Zitao. Research on characteristics of projectile water entry and ballistic resistance of targets under different mediums [D]. Harbin: Harbin Institute of Technology, 2012.
[17] 刘霞, 谭国焕, 王大国. 基于边界造波法的二阶Stokes波的数值生成[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(1): 107-111.
LIU Xia, TAN Guohuan, WANG Daguo. Numerical simulation of second-order Stokes based on wave-generational method of defining inlet boundary condition [J]. Joural of Liaoning Technical University (Natural Science), 2010, 29(1): 107-111.
[18] 李邦华, 郑向远, 李炜, 等. 波浪水槽中Stokes五阶波的数值生成[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(2): 238-250.
LI Banghua, ZHENG Xiangyuan, LI Wei, et al. Simulation of fifth-order Stokes waves in the numerical wave flume [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2016, 40(2): 238-250.
[19] 鲁晶晶. 基于边界造波法的三维数值波浪水池研究[D]. 武汉:华中科技大学, 2018.
LU Jingjing. The research of 3-D numerical wave tank based on wave-generation method of defining inlet boundary conditions [D]. Wuhan: Huazhong University of Science &  Technology, 2018.
[20] 刘莎莎, 顾煜炯, 惠万馨, 等. 基于边界造波法的波浪数值模拟[J]. 可再生能源, 2013, 31(2): 100-103.
LIU Shasha, GU Yujiong, HUI Wanxin, et al. Wave numerical simulation based on wave-generation method of defining inlet boundary conditions [J]. Renewable Energy Resources, 2013, 31(2): 100-103.
[21] 余勇飞. 波浪的数值模拟及其流场结构分析[D]. 哈尔滨:哈尔滨工业大学, 2013.
YU Yongfei. Numerical simulation of wave and analysis of its flow field structure [D]. Harbin: Harbin Institute of Technology, 2013.
[22] 辛颖. Fluent UDF方法在数值波浪水槽中的应用研究[D]. 大连:大连理工大学, 2013.
XIN Ying. Application of Fluent UDF method in the study of numerical wave tank [D]. Dalian: Dalian University of Technology, 2013.
[23] 贺建镁, 朱良生. 基于边界造波法的波浪数值生成[J]. 科学技术与工程, 2010, 10(30): 7468-7471.
HE Jianmei, ZHU Liangsheng. Generated waves based on boundary values [J]. Science Technology and Engineering, 2010, 10(30): 7468-7471.
[24] 杨树兴, 赵良玉, 闫晓勇, 等. 旋转弹动态稳定性理论[M]. 北京: 国防工业出版社, 2014.
YANG Shuxing, ZHAO Liangyu, YAN Xiaoyong, et al. Dynamic stability of spinning missiles [M]. Beijing: National defense industry press, 2014.
[25] May A. Effect of surface condition of a sphere on its water-entry cavity [J]. Journal of Applied Physics, 1951, 22(10): 1219-1222.
[26] Mackie A G. Gravity effects in the water entry problem [J]. Journal of Australian Mathematical Society, 1964, 5: 427-433.
PDF(4384 KB)

1032

Accesses

0

Citation

Detail

Sections
Recommended

/