Low frequency broadband sound absorber based on FP channel-foamed aluminum plate composite structure

KE Yibo, ZHANG Lin, WU Yue, TAO Meng

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (9) : 128-135.

PDF(2006 KB)
PDF(2006 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (9) : 128-135.

Low frequency broadband sound absorber based on FP channel-foamed aluminum plate composite structure

  • KE Yibo, ZHANG Lin, WU Yue, TAO Meng
Author information +
History +

Abstract

The sub-wavelength composite sound absorption structure of FP(fast pass) channel and foamed aluminum is proposed, which strikes a balance between low frequency and broadband sound absorption, with the average absorption coefficient reaching 90%. The pressure-thermal viscosity sound finite element numerical analysis model of the composite sound absorption structure is established, and the experimental results of the impedance tube verify that the composite structure has good sound absorption characteristics starting from the designed cutoff frequency of 366Hz. Based on the finite element analysis method, the effects of cutoff frequency common ratio, sound absorption area ratio, number of channels and thickness of aluminum foam on the sound absorption performance of FP channels are discussed. Moreover, the sound absorption properties are compared with other composite structures. The results show that the composite sound absorption structure has a certain application value in the field of noise control.

Key words

sub-wavelength / broadband sound absorption / foamed aluminum / composite sound absorption structure

Cite this article

Download Citations
KE Yibo, ZHANG Lin, WU Yue, TAO Meng. Low frequency broadband sound absorber based on FP channel-foamed aluminum plate composite structure[J]. Journal of Vibration and Shock, 2022, 41(9): 128-135

References

[1] [1]丁昌林,董仪宝,赵晓鹏.声学超材料与超表面研究进展[J].物理学报,2018,67(19):10-23.
 Ding Chang-Lin, Dong Yi-Bao, Zhao Xiao-Peng. Research advances in acoustic metamaterials and metasurface. Acta Physica Sinica, 2018,67(19):10-23.
[2] 田源,葛浩,卢明辉,陈延峰.声学超构材料及其物理效应的研究进展[J].物理学报,2019,68(19):7-18.
 Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019,68(19):7-18.
[3] 倪旭. 声学人工结构材料及其物理效应的研究[D]. 南京大学, 2015.
Ni Xu. Novel physical effects of sonic crystals and acoustic metamaterials[D].  Nanjing University,2015.
[4] Wang X , Luo X , Zhao H , et al. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials[J]. Applied Physics Letters, 2018, 112(2):021901.
[5] Zhang C , Hu X . Three-Dimensional Single-Port Labyrinthine Acoustic Metamaterial: Perfect Absorption with Large Bandwidth and Tunability[J]. Physical Review Applied, 2016, 6(6).
[6] Jiang X , Liang B , Li R Q , et al. Ultra-broadband absorption by acoustic metamaterials[J]. Applied Physics Letters, 2014, 105(24):534.
[7] 丁昌林, 赵晓鹏, 郝丽梅,等. 一种基于开口空心球的声学超材料[J]. 物理学报, 2011(04):290-294.
 Ding Chang-Lin, Zhao Xiao-Peng, Hao Li-Mei, Zhu Wei-Ren. Acoustic metamaterial with split hollow spheres. Acta Physica Sinica, 2011(04):290-294.
[8] Ding C , Hao L , Zhao X . Two-dimensional acoustic metamaterial with negative modulus[J]. Journal of Applied Physics, 2010, 108(7):509.
[9] Hao L M , Ding C L , Zhao X P . Tunable acoustic metamaterial with negative modulus[J]. Applied Physics A, 2012, 106(4):807-811.
[10] Ding C , Chen H , Zhai S , et al. Acoustic metamaterial based on multi-split hollow spheres[J]. Applied Physics A, 2013, 112(3):533-541.
[11] Yang M , Sheng P . An Integration Strategy for Acoustic Metamaterials to Achieve Absorption by Design[J]. Applied Sciences, 2018, 8(8):1247.
[12] Liu C R , Wu J H , Ma F , et al. A thin multi-order Helmholtz metamaterial with perfect broadband acoustic absorption[J]. Applied Physics Express, 2019, 12(8):084002.1-084002.4.
[13] Liu C R , Wu J H , Yang Z , et al. Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance[J]. Composite Structures, 2020, 246:112366.
[14] 吴飞,黄威,陈文渊,肖勇,郁殿龙,温激鸿.基于微孔板与折曲通道的亚波长宽带吸声结构设计[J].物理学报,2020,69(13):22-28.
Wu Fei, Huang Wei, Chen Wen-Yuan, Xiao Yong, Yu Dian-Long, Wen Ji-Hong. Design of subwavelength broadband hybrid sound absorption structure based on micro-perforated plate and coiled channels. Acta Physica Sinica, 2020,69(13):22-28.
[15] 李晓佳. 通孔泡沫铝组合结构吸声性能研究[D]. 哈尔滨工程大学, 2013.
Li Xiaohang. Sound absorption performance study of the combination of though-hole aluminum foam structure[D]. Harbin University of Engineering, 2013.
[16] 魏鹏. 泡沫铝材料的制备与有限元模拟[D]. 华中科技大学, 2006.
Wei Peng. Fabrication of foamed aluminium and finite simulation[D]. Huazhong University of Science and Technology, 2006.
[17] 陈文清. 多孔材料参数反演及其在消声器仿真中的应用[D].贵州大学,2018.
Chen Wenqing. Inversion of porous material parameters and its application in muffler simulation[D]. Guizhou University. 2018.
[18] 杜功焕, 朱哲民, 龚秀芬. 声学基础.第3版[M]. 南京大学出版社, 2012.
Du Gonghuan, Zhu Zheming, Gong Xiufen. The basis of acoustics. Third edition[M]. Nanjing University Press, 2012.
[19] 闵鹤群, 郭文成. 具有并联不等深度子背腔序列的微穿孔板吸声体吸声特性[J].东南大学学报(自然科学版), 2017,47(01):177-183.
Min Hequn, Guo Wencheng. Absorption characteristics of micro-perforated panel sound absorbers with array of parallel-arranged sub-cavities with different depths[J]. Journal of Southeast University(Natural Science Edition), 2017,47(01):177-183.
PDF(2006 KB)

Accesses

Citation

Detail

Sections
Recommended

/