Nonlinear ultrasonic evaluation of bonding interface curing based on collinear frequency-mixing

YUAN Bo1, SHUI Guoshuang1, WANG Yuesheng1,2

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (9) : 260-266.

PDF(1618 KB)
PDF(1618 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (9) : 260-266.

Nonlinear ultrasonic evaluation of bonding interface curing based on collinear frequency-mixing

  • YUAN Bo1, SHUI Guoshuang1, WANG Yuesheng1,2
Author information +
History +

Abstract

The collinear wave mixing method is one of the promising non-destructive evaluation methods with nonlinear ultrasonic waves. In this technique, evaluation of the mechanical properties of materials is realized by using the nonlinear interaction between two waves propagating in the medium with damage. The collinear wave mixing detection of bonding specimen with randomly distributed micro-cracks in the adhesive layer was numerically studied using the finite element software ABAQUS; and the variation of resonant wave amplitude with the number of micro-cracks was obtained. Experimental tests were then conducted on the adhesive specimen of aluminum alloy 6061/modified acrylate adhesive/ aluminum alloy 6061; and the variation of resonant wave amplitude with curing time was obtained based on the wave mixing of collinear transverse and longitudinal waves. The results show that there are some internal relations between the amplitude of resonant wave, the number of micro-cracks in the adhesive layer and the curing time of the bonding specimen. The amplitude of resonant wave decreases constantly with the increases of the number of micro-cracks. With increasing curing time, the amplitude of resonant wave increases constantly and tends to be stable until the curing process is completed. Collinear wave mixing technique can be used effectively to monitor and evaluate the curing process of the adhesive.

Key words

adhesive curing;collinear wave mixing;nonlinear ultrasonic;non-destructive evaluation 

Cite this article

Download Citations
YUAN Bo1, SHUI Guoshuang1, WANG Yuesheng1,2. Nonlinear ultrasonic evaluation of bonding interface curing based on collinear frequency-mixing[J]. Journal of Vibration and Shock, 2022, 41(9): 260-266

References

[1] 孙德林, 余先纯. 胶黏剂与粘接技术基础[M]. 北京: 化学工业出版社, 2014.
SUN Delin, YU Xianchun. Adhesive and adhesive technology foundation[M].Beijing:Chemical Industry Press,2014.
[2] 王超, 梁钒, 黄玉东. 胶粘剂固化行为对性能的影响[J]. 中国胶粘剂, 2005, 14(10): 14-16.
WANG Chao, LIANG Fan, HUANG Yudong. The effect of curing behavior on the adhesive properties[J]. China Adhesives, 2005,14(10): 14-16.
[3]  马宏伟, 张一澍, 王星, 等. 基于声全息的超声波与微缺陷耦合声场特性研究[J]. 振动与冲击, 2019, 38(3): 75-79.
MA Hongwei, ZHANG Yishu, WANG Xing, et al. Ultrasonic wave-micro defect coupled sound field characteristics based on acoustic holography[J]. Journal of Vibration and Shock, 2019, 38(3): 75-79.
[4]  刘增华, 冯雪健, 任捷, 等. 基于频率-波数分析的激光Lamb波传播特性试验研究[J]. 振动与冲击, 2019, 38(22): 70-78.
LIU Zenghua, FENG Xuejian, REN Jie, et al. Experimental study on the propagation characteristics of laser-induced Lamb waves based on frequency-wavenumber analysis. Journal of Vibration and Shock, 2019, 38(22): 70-78.
[5]  苑博, 税国双, 汪越胜. 循环温度疲劳作用下粘接界面损伤的非线性超声评价[J]. 物理学报, 2018, 67(7): 74302.
Yuan Bo, Shui Guo-Shuang, Wang Yue-Sheng. Nonlinear ultrasonic evaluation of damage to bonding interface under cyclic temperature fatigue[J]. Acta Physica Sinica, 2018, 67(7): 074302.
[6] Shui G, Song X, Xi J, et al. Experimental characterization of impact fatigue damage in an adhesive bonding using the second harmonics[J]. Journal of Nondestructive Evaluation, 2017, 36(2): 23.
[7]  Li X, Shui G, Zhao Y, et al. Propagation of non-linear Lamb waves in adhesive joint with micro-cracks distributing randomly[J]. Applied Sciences. 2020, 10(3): 741.
[8]  苑博, 税国双, 汪越胜. 非线性超声混频检测技术在无损检测中的研究进展[J]. 机械工程学报, 2019, 55(16): 33-46.
YUAN Bo, SHUI Guo-Shuang, Wang Yue-Sheng. Advances in research of nonlinear ultrasonic wave mixing detection technology in non-destructive evaluation[J]. Journal of Mechanical Engineering, 2019, 55(16): 33-46.
[9] 焦敬品, 孙俊俊, 吴斌, 等. 结构微裂纹混频非线性超声检测方法研究[J]. 声学学报, 2013, 48(6): 648-656.
JIAO Jingpin, SUN Junjun, WU Bin, et al. A frequency-mixing nonlinear ultrasonic technique for micro-crack detection[J]. Acta Acustica, 2013, 48(6): 648-656.
[10] 刘斯明, 彭地, 赵翰学, 等. SiCp颗粒增强铝基复合材料非共线非线性响应试验观察[J]. 机械工程学报, 2012, 48(22): 21-26.
LIU Siming, PENG Di, ZHAO Hanxue, et al. Experimental observation of nonlinear response of SiCp aluminum-matrix composites using non-collinear technique[J]. Journal of Mechanical Engineering, 2012, 48(22): 21-26.
[11] Liu M H, Tang G X, Jacobs L J, et al. Measuring acoustic nonlinearity parameter using collinear wave mixing[J]. Journal of Applied Physics, 2012, 112(2): 375-381.
[12]  Tang G, Liu M, Jacobs L J, et al. Detecting localized plastic strain by a scanning collinear wave mixing method[J]. Journal of Nondestructive Evaluation, 2014, 33(2): 196-204.
[13]  Zhang Y H, Li X X, Wu Z Y, et al. Fatigue life prediction of metallic materials based on the combined nonlinear ultrasonic parameter[J]. Journal of Materials Engineering and Performance, 2017, 26(8): 3648-3656.
[14]  Li F L, Zhao Y X, Cao P, et al. Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity[J]. Ultrasonics, 2018, 87: 33-43.
[15]  Jiao J P, Meng X J, He C F, et al. Nonlinear Lamb wave-mixing technique for micro-crack detection in plates[J]. NDT & E International, 2017, 85: 63-71.
[16] JU T, ACHENBACH J D, JACOBS L J, et al. A non-collinear mixing technique to measure the acoustic nonlinearity parameter of an adhesive bond from one side of the sample[J]. The Journal of the Acoustical Society of America ,2017,141(5):3905-3905.
[17]  Sun M X, Xiang Y X, Deng M X, et al. Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity[J]. NDT & E International, 2018, 93: 1-6.
[18]  Chen Z M, Tang G X, Zhao Y X, et al. Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity[J]. Journal of the Acoustical Society of America, 2014, 136(5): 2389-2404.
[19]  Zhao Y X, Xu Y M, Chen Z M, et al. Detection and characterization of randomly distributed micro-cracks in elastic solids by one-way collinear mixing method[J]. Journal of Nondestructive Evaluation, 2018, 37(3): 47.
[20]  Ding X, Zhao Y, Deng M, et al. One-way Lamb mixing method in thin plates with randomly distributed micro-cracks[J]. International Journal of Mechanical Sciences, 2020, 171: 105371.
[21]  王学刚, 朱亮, 陈剑虹. 铝合金粘接接头失效模型的研究 [J]. 机械工程材料, 2007, 31(5): 48-51+61.
WANG Xuegang, ZHU Liang, CHEN Jianhong. Failure model for aluminum alloy adhesive joints[J]. Materials for Mechanical Engineering, 2007, 31(5): 48-51+61.
[22]  彭博, 税国双, 汪越胜. 蜂窝夹层板结构中导波的传播特性及其脱粘损伤的检测[J]. 振动与冲击, 2019, 38(12): 140-147.
 PENG Bo, SHUI Guo-Shuang, Wang Yue-Sheng. Properties of guided waves propagating in honeycomb sandwich plates and the detection of disbonding damage using ultrasonic waves[J]. Journal of Vibration and Shock, 2019, 38(12): 140-147.
[23]  何静. 室温固化丙烯酸酯胶粘剂[J]. 北京林业大学学报, 1994, 16(4): 92-100.
HE Jing. Curing acrylate adhesive under room temperature[J]. Journal of Beijing Forestry University, 1994, 16(4): 92-100.
[24]  唐黎明, 庹新林. 高分子化学(第2版)[M]. 北京: 清华大学出版社, 2009.
TANG Liming, TUO Xinlin. Polymer chemistry, 2nd[M]. Beijing: Tsinghua University Press, 2009.
[25] 王槐三,寇晓康.高分子化学教程[M].北京:科学出版社,2007.
WANG Huaisan, KOU Xiaokang. Polymer chemistry course[M]. Beijing: Science Press, 2007.
PDF(1618 KB)

327

Accesses

0

Citation

Detail

Sections
Recommended

/