SHPB tests and constitutive model of red-sandstone after freeze-thaw and thermal shock cycles

ZHANG Rongrong1,2,3, JING Laiwang1,2,3,4, MA Dongdong1,2,3

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (9) : 267-275.

PDF(3900 KB)
PDF(3900 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (9) : 267-275.

SHPB tests and constitutive model of red-sandstone after freeze-thaw and thermal shock cycles

  • ZHANG Rongrong1,2,3, JING Laiwang1,2,3,4, MA Dongdong1,2,3
Author information +
History +

Abstract

To investigate the effects of freeze-thaw (F-T) cycle and thermal shock (T-S) cycle on the dynamic mechanical properties of red sandstone, the dynamic impact compression tests were carried out on red sandstone specimens with aspect ratio of 0.5 after F-T and T-S cycles by Φ50 mm splitting Hopkinson pressure bar device. In addition, the influences of F-T and T-S cycle number on dynamic mechanical parameters and microstructure of red sandstone were analyzed and compared. Test results indicated that the dynamic stress-strain curve of red sandstone could be divided into three stages: elastic stage, plastic stage, and failure stage. The longitudinal wave velocity, dry density, dynamic peak stress, elastic modulus, and average fragmentation of red sandstone gradually decreased with the increase of cycle number, while the porosity, peak strain, absorption energy, specific energy absorption and mass fractal dimension increased. By comparing the microscopic features of rock, it could be found that the internal damage degree of red sandstone caused by T-S cycle was larger compared with that by F-T cycle under the same cycle number. Finally, a dynamic constitutive model of red sandstone that could consider F-T and T-S cycle damage was established based on viscoelastic Zhu-Wang-Tang model. Moreover, the accuracy and applicability of the model were verified by comparing the theoretical and test dynamic stress-strain curves. The model could better reflect the dynamic strength and deformation characteristics of red sandstone after F-T/T-S cycle under impact load.

Key words

rock dynamics / freeze-thaw cycle / thermal shock cycle / red sandstone / microstructure / constitutive model

Cite this article

Download Citations
ZHANG Rongrong1,2,3, JING Laiwang1,2,3,4, MA Dongdong1,2,3. SHPB tests and constitutive model of red-sandstone after freeze-thaw and thermal shock cycles[J]. Journal of Vibration and Shock, 2022, 41(9): 267-275

References

[1]  闻名,许金余,王鹏,等. 水分与冻融环境下岩石动态拉伸试验及细观分析 [J]. 振动与冲击,2017,36(20):6-11.
Wen Ming, Xu Jin-yu, Wang Peng, et al. Split tensile tests and mesostructure analyses on red-sandstone under moisture and freeze-thaw conditions [J]. Journal of Vibration and Shock, 2017, 36(20): 6-11.
[2]  Ercoli L, Zimbardo M, Nocilla A. Rock decay phenomena and collapse processes in the “Latomiae del Paradiso” in Syracuse (Sicily) [J]. Engineering Geology, 2014, 178: 155-165.
[3] Alavi Nezhad Khalil Abad S V, Tugrul A, Gokceoglu C, et al. Characteristics of weathering zones of granitic rocks in Malaysia for geotechnical engineering design [J]. Engineering Geology, 2016, 200: 94-103.
[4] 郑广辉,许金余,王鹏,等. 不同饱水度红砂岩静态本构关系及动态力学性能研究 [J]. 振动与冲击,2018,37(16):31-37.
Zheng Guang-hui, Xu Jin-yu, Wang Peng, et al. Static constitutive relation and dynamic mechanical properties of red sandstone with different water saturation [J]. Journal of Vibration and Shock, 2018, 37(16): 31-37.
[5] 徐光苗,刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究 [J]. 岩石力学与工程学报,2005,24(17):3076-3082.
Xu Guang-miao, Liu Quan-sheng. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3076-3082.
[6] Yavuz H, Altindag R, Sarac S, et al. Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 767-775.
[7] 杨更社,申艳军,贾海梁,等. 冻融环境下岩体损伤力学特性多尺度研究及进展 [J]. 岩石力学与工程学报,2018,37(3):545-563.
Yang Geng-she, Shen Yan-jun, Jia Hai-liang, et al. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 545-563.
[8] 张慧梅,孟祥振,彭川,等. 冻融-荷载作用下基于残余强度特征的岩石损伤模型 [J]. 煤炭学报,2019,44(11):3404-3411.
Zhang Hui-mei, Meng Xiang-xu, Peng Chuan. Rock damage constitutive model based on residual intensity characteristics under freeze-thaw and load [J]. Journal of China Coal Society, 2019, 44(11):3404-3411.
[9] 杨建华,吴泽南,姚池,等. 地应力对岩石爆破开裂及爆炸地震波的影响研究 [J]. 振动与冲击,2020,39(13):64-70.
Yang Jian-hua, Wu Ze-nan, Yao Chi, et al. Influences of in-situ stress on blast-induced rock fracture and seismic waves [J]. Journal of Vibration and Shock, 2020, 39(13): 64-70.
[10] 朱要亮,俞缙,高海东,等. 水冷却对高温花岗岩的细观损伤及动力学性能影响 [J]. 爆炸与冲击,2019,39(8):1-12.
Zhu Yao-liang, Yu Jin, Gao Hai-dong, et al. Effect of water cooling on microscopic damage and dynamic properties of high-temperature granite [J]. Explosion and Shock Waves, 2019, 39(8): 1-12.
[11] 郤保平,吴阳春,赵阳升. 热冲击作用下花岗岩宏观力学参量与热冲击速度相关规律试验研究 [J]. 岩石力学与工程学报,2019,38(11):2194-2207.
Xi Bao-ping, Wu Yang-chun, Zhao Yang-sheng. Experimental study on the relationship between macroscopic mechanical parameters of granite and thermal shock velocity under thermal shock [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2194-2207.
[12] 张慧梅,夏浩峻,杨更社,等. 冻融循环和围压对岩石物理力学性质影响的试验研究[J]. 煤炭学报,2018,43(2):441-448.
Zhang Hui-mei, Xia Hao-jun, Yang Geng-she, et al. Experimental research of influences of freeze-thaw cycles and confining pressure on physical-mechanical characteristics of rocks [J]. Journal of China Coal Society, 2018, 43(2):441-448.
[13] Huseyin Y. Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone [J]. Bulletin of Engineering Geology and the Environment, 2011, 70: 187-192.
[14] Ghobadi M H, Babazadeh R. Experimental studies on the effects of cyclic freezingthawing, salt Hettema, crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones [J]. Rock Mechanics and Rock Engineering, 2015, 48: 1001-1016.
[15] 刘少赫,许金余,王鹏,等. 冻融红砂岩的SHPB试验研究及细观分析 [J]. 振动与冲击,2017,36(20):203-209.
Liu Shao-he, Xu Jin-yu, Wang Peng, et al. A SHPB experimental study and microscomic analysis of freeze-thaw red sandstone [J]. Journal of Vibration and Shock, 2017, 36(20): 203-209.
[16] Wang P, Xu J Y, Liu S, et al. Static and dynamic mechanical properties of sedimentary rock after freeze-thaw or thermal shock weathering [J]. Engineering Geology, 2016, 210: 148-157.
[17] ISRM. In: R. Ulusay, J. Hudson, (Eds.). The complete ISRM suggested methods for rock characterization, testing and monitoring [S]. International Society for Rock Mechanics, pp. 1974-2006, 2007.
[18] 宋力,胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击,2005,25(4):368-373.
Song Li, Hu Shi-sheng. Two wave and three wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368-373.
[19] 袁璞,马芹永. SHPB试验中岩石试件的端面不平行修正[J]. 爆炸与冲击,2017,37(5):929-936.
Yuan Pu, Ma Qin-yong. Correction of non-parallel end-faces of rock specimens in SHPB tests [J]. Explosion and Shock Waves, 2017, 37(5): 929-936.
[20] 金爱兵,吴常贵,赵怡晴,等. 热处理对冻结砂岩物理力学性质的影响[J]. 中南大学学报(自然科学版),2019,50(9):2207-2214.
Jin Ai-bing, Wu Chang-gui, Zhao Yi-qing, et al. Effect of heat treatment on physical and mechanical properties of frozen sandstone [J]. Journal of Central South University (Science and Technology), 2019, 50(9): 2207-2214.
[21] 贾海梁,项伟,谭龙,等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报,2016,35(5):879-895.
Jia Hai-liang, Xiang Wei, Tan Long, et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 879-895.
[22] 平琦,马芹永,袁璞. 岩石试件SHPB劈裂拉伸试验中能量耗散分析[J]. 采矿与安全工程学报,2013,30(3):401-407.
Ping Qi, Ma Qin-yong, Yuan Pu. Energy dissipation analysis of stone specimens in SHPB tensile test [J]. Journal of Mining & Safety Engineering, 2013, 30(3): 401-407.
[23] 穆朝民,宫能平. 煤体在冲击荷载作用下的损伤机制 [J]. 煤炭学报,2017,42(8):2011-2018.
Mu Chao-min, Gong Neng-ping. Damage mechanism of coal under impact loads [J]. Journal of China Coal Society, 2017, 42(8):2011-2018.
[24] 郭瑞奇,任辉启,张磊,等. 分离式大直径Hopkinson杆实验技术研究进展[J]. 兵工学报,2019,40(7):1518-1536.
Guo Rui-qi, Ren Hui-qi, Zhang Lei, et al. Research process of larger-diameter split Hopkinson bar experimental technique [J]. Acta Armamentarii, 2019, 40(7): 1518-1536.
[25] Ma Q Y, Ma D D, Yao Z M, et al. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen [J]. Cold Regions Science and Technology, 2018, 153:10-17.
[26] Zhang F L, Zhu Z W, Fu T T, et al. Damage mechanism and dynamic constitutive model of frozen soil under uniaxial impact loading [J]. Mechanics of Materials, 2020, 140: 103217.
[27] 徐松林,周李姜,黄俊宇,等. 岩石类脆性材料动态压剪耦合特性研究 [J]. 振动与冲击,2016,35(10):9-17.
Xu Song-lin, Zhou Li-jiang, Huang Jun-yu, et al. Dynamic coupled behavior of rock materials under combined compression and shear loading [J]. Journal of Vibration and Shock, 2016, 35(10): 9-17.
PDF(3900 KB)

Accesses

Citation

Detail

Sections
Recommended

/