[1] Kane A, Børvik T., Hopperstad O. S., Langseth M.. Finite Element Analysis of Plugging Failure in Steel Plates Struck by Blunt Projectiles [J]. Journal of Applied Mechanics,2009,76(5).
[2] 肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D]. 哈尔滨工业大学, 2010.
[3] Zukas J A,Nicholas T,Swift H F. Impact Dynamics[M]. New York: Wiley,: 1982.
[4] CLAUSEN A H, BØRVIK T, HOPPERSTAD O S, Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality[J]. Materials Science and Engineering: A, 2004, 364(1–2): 260–272.
[5] 林莉. 网壳结构冲击响应及失效机理精细化研究[D]. 哈尔滨工业大学, 2015.
[6] Johnson G R , Cook W H . A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21:541-548.
[7] RULE W K, JONES S E. A REVISED FORM FOR THE JOHNSON–COOK STRENGTH MODEL[J]. International Journal of Impact Engineering, 1998, 21(8): 609–624.
[8] 胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究 [J].爆炸与冲击,2003(02):188-192.
[8] Hu changming,He hongliang,Hu shisheng.Research on Dynamic Mechanical Properties of 45# Steel[J].Explosion and Shock Waves,2003(02):188-192
[9] 朱昱. 基于Johnson-Cook模型的Q355B钢动态本构关系研究 [D]. 哈尔滨:哈尔滨理工大学, 2019.
[10] BØRVIK T, HOPPERSTAD O S, LANGSETH M. Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates[J]. International Journal of Impact Engineering, 2003, 28(4): 413–464.
[11] BØRVIK T, LANGSETH M, HOPPERSTAD O S, 等. Ballistic penetration of steel plates[J]. International Journal of Impact Engineering, 1999, 22(9): 855–886.
[12] XIAO X, ZHANG W, WEI G. Experimental and numerical investigation on the deformation and failure behavior in the Taylor test[J]. Materials & Design, 2011, 32(5): 2663–2674.
[13] XIAO X, WANG Y, VERSHININ V, et al. Effect of Lode angle in predicting the ballistic resistance of Weldox700E steel plates struck by blunt projectiles[J]. International Journal of Impact Engineering, 2019, 128: 46–71.
[14] XIAO X, MU Z, PAN H, 等. Effect of the Lode parameter in predicting shear cracking of 2024-T351 aluminum alloy Taylor rods[J]. International Journal of Impact Engineering, 2018, 120: 185–201.
[15] SUNG J H, KIM J H, WAGONER R H. A plastic constitutive equation incorporating strain, strain-rate, and temperature[J]. International Journal of Plasticity, 2010, 26(12): 1746–1771.
[16] 黄博. Q460D钢动态力学性能及Taylor杆拉伸撕裂数值预报研究[D]. 哈尔滨理工大学, 2020.
[17] Huajie Wen, Hussam Mahmoud. New Model for Ductile Fracture of Metal Alloys. I: Monotonic Loading[J]. Journal of Engineering Mechanics,2015.
[18] 司马玉洲, 肖新科, 王要沛, 等. 7A04-T6高强铝合金板对平头杆弹抗侵彻行为的试验与数值模拟研究[J]. 振动与冲击, 2017, 36(11): 1-7+13.
[18] SIMA yuzhou,Xiao xinke, Wang yaopei, Zhang wei.Tests and numerical simulation for anti-penetrating behavior of a high strength 7A04-T6 aluminum alloy plate against a blunt projectile's impact[J]. Journal of Vibration and Shock,2017,36(11):1-7+13
[19] Liu L X, Zheng Q L, Zhu J, et al. Effects of Stress Triaxiality and Lode Parameter on Ductile Fracture in Aluminum Alloy [J]. Rare Metal Materials and Engineering, 2019, 48(2): 433-436.
[20] ZHANG K S, BAI J B, F R ANCOISD. Numerical analysis of the influence of the Lode parameter on void growth [J]. International Journal of Solid sand Structures, 2001, 38(32): 5847-5856.
[21] K. Danas, P. Ponte Castañeda. Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials [J]. International Journal of Solids and Structures, 2012, 49(11): 1325-1342.
[22] LIU J, ZHENG B, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171.
[23] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 385-391.
[24] 张永. 6061-T651铝合金力学性能测试及抗冲击性能研究[D]. 中国民航大学, 2020.