Impact resistance of new cross negative Poisson’s ratio honeycomb structure

LIU Tao1, XIAO Zhengming1, HUANG Jiangcheng1, LIU Weibiao2

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (11) : 183-192.

PDF(5079 KB)
PDF(5079 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (11) : 183-192.

Impact resistance of new cross negative Poisson’s ratio honeycomb structure

  • LIU Tao1, XIAO Zhengming1, HUANG Jiangcheng1, LIU Weibiao2
Author information +
History +

Abstract

Negative Poisson's ratio mechanical metamaterials have attracted the attention of scholars because of their advantages in high designability, lightweight and impact resistance. Classical configurations such as concave hexagonal structure and chiral structure have been extensively studied. In this paper, a new type of cross negative Poisson's ratio honeycomb structure is proposed. Based on the energy method, the Poisson's ratio of the structure is derived. The analytical solution is in good agreement with the finite element results, which proves the effectiveness of the derivation method. The deformation mode, nominal stress-strain curve and energy absorption characteristics of cross honeycomb structure with different impact velocity and rod length ratio coefficient are studied. The results show that the smaller the ratio coefficient of rod length is, the smaller the Poisson's ratio is. The impact velocity and rod length ratio coefficient affect the deformation mode, the nominal stress-strain curve and the platform stress of the cross honeycomb structure under impact load. The body energy absorption of cross honeycomb structure will accelerate with the increase of strain at medium speed, while the growth trend of energy absorption is no longer accelerated with the increase of strain at high speed but shows regular wavy growth.

Key words

negative Poisson’s ratio / cross-shaped cellular structure / energy method / deformation modes / energy absorption

Cite this article

Download Citations
LIU Tao1, XIAO Zhengming1, HUANG Jiangcheng1, LIU Weibiao2. Impact resistance of new cross negative Poisson’s ratio honeycomb structure[J]. Journal of Vibration and Shock, 2023, 42(11): 183-192

References

[1] KSHETRIMAYUM R S. A brief intro to metamaterials [J]. IEEE Potentials, 2005, 23(5): 44-46.
[2] 任鑫,张相玉,谢亿民.负泊松比材料和结构的研究进展[J].力学学报, 2019, 51(03): 656-687.
REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019 ,51(03): 656-687.
[3] AEH L A. Treatise on the mathematical theory of elasticity[M]. New York: Cambridge University Press, 1927.
[4] GUNTON D J, Saunders G A. The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth[J]. Journal of Materials Science, 1972, 7(9): 1061-1068.
[5] 高玉魁.负泊松比超材料和结构[J].材料工程, 2021, 49(05): 38-47.
GAO Yukui. Auxetic metamaterials and structures[J]. Journal of Materials Engineering, 2021, 49(05): 38-47.
[6] WOJCIECHOWSKI K W. Two-dimensional isotropic system with a negative poisson ratio[J]. North-Holland, 1989, 137(1-2).
[7] LAKES R. Deformation mechanisms in negative Poisson’s ratio materials: Structural aspects[J]. Journal of Materials Science, 1991, 26(9): 2287-2292.
[8] QIU K P, WANG R Y, WANG Z, et al. Effective elastic properties of flexible chiral honeycomb cores including geometrically nonlinear effects[J]. Meccanica, 2018, 53(15).
[9] ZHAO C F, ZHOU Z T, LIU X X, et al. The in-plane stretching and compression mechanics of Negative Poisson’s ratio structures: Concave hexagon, star shape, and their combination[J], Journal of Alloys and Compounds, 2020, 859(2):157840.
[10] 刘海涛,王彦斌,张争艳.可调泊松比圆弧星型结构的参数化设计[J].中国机械工程, 2021, 32(18): 2211-2216.
LIU Haitao, WANG Yanbin, ZHANG Zhengyan. Parametrization design of arc-start-shaped structures with tunable Poisson’s ratio[J]. China Mechanical Engineering, 2021, 32(18): 2211-2216.
[11] 沈建邦,肖俊华.负泊松比可变弧角曲边内凹蜂窝结构的力学性能[J].中国机械工程, 2019, 30(17): 2135-2141.
SHEN Jianbang, XIAO Junhua. Mechanics properties of negetive Poisson’s ratio honeycomb structures with variable arc angle curved concave sides[J]. China Mechanical Engineering, 2021, 32(18): 2211-2216.
[12] ZHANG X L, TIAN R L, ZHANG Z W, et al. In-plane elasticity of a novel vertical strut combined re-entrant honeycomb structure with negative Poisson’s ratio[J]. Thin-Walled Structures, 2021, 163.
[13] 王彦斌,刘海涛.负泊松比圆弧曲线蜂窝芯结构的力学分析[J].云南大学学报(自然科学版), 2020, 42(06): 1159-1165.
WANG Yanbin, LIU Haitao. Mechanical analysis of circular curve honeycomb core with negative Poisson’s ratio[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(6): 1159-1165.
[14] WANG N, DENG Q. Effect of Axial Deformation on Elastic Properties of Irregular Honeycomb Structure[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-12.
[15] 张伟,侯文彬,胡平.新型负泊松比多孔吸能盒平台区力学性能[J].复合材料学报, 2015, 32(02): 534-541.
ZHANG Wei, HOU Wenbin, HU Ping. Mechanical properties of new Poisson’s ratio crush box with cellular struture in plateau stage[J]. Acta Materiae Compositae Sinica, 2015, 32(02): 534-541.
[16] 张新春,祝晓燕,李娜.六韧带手性蜂窝结构的动力学响应特性研究[J].振动与冲击, 2016, 35(08): 1-7+26.
ZHANG Xinchun, ZHU Xiaoyan, LI Na. A study of the dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of Vibration and Shock, 2016, 35(08): 1-7+26.
[17] 韩会龙,张新春.星形节点周期性蜂窝结构的面内动力学响应特性研究[J].振动与冲击, 2017, 36(23): 223-231.
HANG Huilong, ZHANG Xinchun. In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures[J]. Journal of Vibration and Shock, 2017, 36(23): 223-231.
[18] 马芳武,梁鸿宇,赵颖,等.内凹三角形负泊松比材料的面内冲击动力学性能[J].振动与冲击, 2019, 38(17): 81-87+127.
MA Fangwu, LIANG Hongyu, ZHAO Ying, et al. In-plane impact dynamic performance of concave triangle material with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2019, 38(17): 81-87+127.
[19] 卢子兴,王欢,杨振宇,等.星型-箭头蜂窝结构的面内动态压溃行为[J].复合材料学报, 2019, 36(08): 1893-1900.
LU Zixing, WANG Huan, YANG Zhenyu, et al. In-plane dynamic crushing of star-arrowhead honeycomb structure[J]. Acta Materiae Compositae Sinica, 2019, 36(08): 1893-1900.
[20] ZHAO Y, ZHANG Q, LI Y W, et al. Theoretical, emulation and experimental analysis on auxetic re-entrant octagonal honeycombs and its applications on pedestrian protection of engine hood[J]. Composite Structures, 2021:113534.
[21] WEI L L, ZHAO X, YU Q, et al. Quasi-static axial compressive properties and energy absorption of star-triangular auxetic honeycomb[J]. Composite Structures, 2021, 267.
[22] GAO D W, WANG S H, ZHANG M Z, et al. Experimental and numerical investigation on in-plane impact behaviour of chiral auxetic structure[J]. Composite Structures, 2021, 267.
[23] 魏路路,余强,赵轩,等.内凹-反手性蜂窝结构的面内动态压溃性能研究[J].振动与冲击, 2021, 40(04): 261-269.
WEI Lulu, YU Qiang, ZHAO Xuan, et al. In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb[J]. Journal of Vibration and Shock, 2021, 40(04): 261-269.
[24] 沈建邦,肖俊华,梁希,等.负泊松比曲边内凹蜂窝结构的面内冲击动力学数值研究[J].中国机械工程, 2020, 31(16): 1998-2004.
SHEN Jianbang, XIAO Junhua, LIANG Xi, et al. Numerical study on in-plane impact dynamic of negative Poisson’s ratio honeycomb structures with curved concave sides[J]. China Mechanical Engineering, 2020, 31(16): 1998-2004.
[25] 任毅如,蒋宏勇,金其多,等.仿生负泊松比拉胀内凹蜂窝结构耐撞性[J].航空学报, 2021, 42(03): 314-324.
REN Yiru, JIANG Hongyong, JIN Qiduo, et al. Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson’s ratio[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(03): 314-324.
[26] 尤泽华,肖俊华,王美芬.弧边内凹蜂窝负泊松比结构的力学性能[J].复合材料学报: 1-11[2022-05-31].
YOU Zehua, XIAO Junhua, WANG Meifen. Mechanical properties of concave honeycomb structure with negative Poisson’s ratio[J]. Acta Materiae Compositae Sinica: 1-11[2022-05-31].
[27] Liu W, Wang N, Luo T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure[J]. Materials & Design, 2016, 100(Jun.):84-91.
[28] Mousanezhad D, Ghosh R, Ajdari A, et al. Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening[J]. International Journal of Mechanical Sciences, 2014, 89:413-422.
[29] A Hönig, Stronge W J. In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences, 2002, 44(8):1665-1696.
[30] Zou Z, Reid S R, Tan P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1):165-176.
[31] 虞科炯,徐峰祥,华林.正弦曲边负泊松比蜂窝结构面内冲击性能研究[J].振动与冲击,2021,40(13): 51-59.
YU Kejiong, XU Fengxiang, HUA Lin. In plane impact performance of honeycomb structure with sinusoidal
curved edge and negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2021, 40(13): 51-59.
PDF(5079 KB)

371

Accesses

0

Citation

Detail

Sections
Recommended

/