Small samples electromagnetic pulse classification  using an optimal ensemble learning method

WANG Xueqing1,2,3, LIU Xiaojun1,2, LIU Yan4, CHENG Lu1,2,3, XU Xin1,2, JI Yicai1,2, FANG Guangyou1,2

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (11) : 193-198.

PDF(840 KB)
PDF(840 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (11) : 193-198.

Small samples electromagnetic pulse classification  using an optimal ensemble learning method

  • WANG Xueqing1,2,3,  LIU Xiaojun1,2, LIU Yan4,  CHENG Lu1,2,3, XU Xin1,2, JI Yicai1,2, FANG Guangyou1,2
Author information +
History +

Abstract

The classification of nuclear and lightning electromagnetic pulse is a key problem in nuclear identification system, in which the main challenge is that the level of class imbalance can be as huge as  . For this purpose, we propose SMALLBAG, a novel ensemble learning method. First, we develop a preprocessing procedure to rebuild training set, in which data augmentation methods are used to generate more minority class samples and resampling scheme is proposed to approach class balance. Second, feature extraction is performed in time, frequency and wavelet domains, which are used to characterize the signal. Finally, the ensemble learning method is proposed to alleviate the influence of class imbalance and improve the performance of identification. Experimental results indicate that the simplicity of the proposed learning method ensures the identification accuracy and real-time requirements at the same time, i.e. 99.99% identification accuracy and 0.67 ms testing time per sample.

Key words

ensemble learning / class imbalance / small samples / nuclear electromagnetic pulse (NEMP) / lightning electromagnetic pulse (LEMP)

Cite this article

Download Citations
WANG Xueqing1,2,3, LIU Xiaojun1,2, LIU Yan4, CHENG Lu1,2,3, XU Xin1,2, JI Yicai1,2, FANG Guangyou1,2. Small samples electromagnetic pulse classification  using an optimal ensemble learning method[J]. Journal of Vibration and Shock, 2023, 42(11): 193-198

References

[1] Xie Y, Wang Z, Wang Q, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781-787.
[2] 祁树锋;李夕海;韩绍卿; 等. 基于多重分形分析的核爆与雷电电磁脉冲识别[J]. , 2013, 32(7): 8-10.
QI Shu-Feng; LI Xi-Hai; Han SHAO-Qing; et al. Discrimination of Nuclear Explosion and Lightning Electromagnetic Pulse Using Multi-fractals Analysis. , 2013, 32(7): 8-10.
[3] Qi S F, Li X H, Han S Q, et al. Discrimination of nuclear explosion and lightning electromagnetic pulses using multi-fractal analysis[J]. Zhendong yu Chongji(Journal of Vibration and Shock), 2013, 32(7).
[4] Rakov V A, Uman M A. Lightning: physics and effects[M]. Cambridge university press, 2003.
[5] Heavner M J, Suszcynsky D M, Smith D A. LF/VLF intracloud waveform classification[C]//International Conference on Atmospheric Electricity. Versailles, France. 2003.
[6] Betz H D, Schmidt K, Oettinger P, et al. Lightning detection with 3‐D discrimination of intracloud and cloud‐to‐ground discharges[J]. Geophysical research letters, 2004, 31(11).
[7] Liu F, Zhu B, Lu G, et al. Observations of blue discharges associated with negative narrow bipolar events in active deep convection[J]. Geophysical Research Letters, 2018, 45(6): 2842-2851.
[8] Schmitter E D. Remote sensing and modeling of lightning caused long recovery events within the lower ionosphere using VLF/LF radio wave propagation[J]. Advances in Radio Science, 2014, 12: 241-250.
[9] 祁树锋,李夕海,韩绍卿, 等. 核爆与雷电电磁脉冲识别 [J] . , 强激光与粒子束 , 2012,24(12):2935-2940.
QI Shu-feng, LI Xi-hai, HAN Shao-qing, et al. Discrimination of nuclear explosion and lightning electromagnetic pulse [J]. High Power Laser and Particle Beams,2012,24(12):2935-2940.
[10] 王涛,陈福贵,刘明,等 . 基于时域特征分布的核爆电磁脉冲识别算法[J]. 振动与冲击 ,2020,39(08):159 164.
WANG Tao, CHEN Fu-gui, LIU Ming, et al. A discrimination algorithm of nuclear electromagnetic p ulse based on characteristic parameters in time domain[J]. Journal of Vibration and Shock, 2020,39(08):159 164.
[11] Ballarotti M G, Saba M M F, Pinto Jr O. High‐speed camera observations of negative ground flashes on a millisecond‐scale[J]. Geophysical Research Letters, 2005, 32(23).
[12] Nag A, Murphy M J, Cummins K L, et al. Recent evolution of the us National lightning detection network[C]//23rd International Lightning Detection Conference & 5th International Lightning Meteorology Conference. 2014.
[13] Tsurushima D, Honma N, Tsuchiya F, et al. Matching Algorithms of ELF-LEMPs and Lightning Geo-location Data[J]. IEEJ Transactions on Power and Energy, 2018, 138(5): 339-345.
[14] 韩绍卿;宋仔标;伍海军. 改进的波形复杂度算法在核爆炸监测中的应用 [J]. , 2011, 30(2): 205-209.
HAN Shao-qing; SONG Zi-biao;WU Hai-jun. The application of improved algorithms of P-wave complexity in nuclear explosion monitoring. , 2011, 30(2): 205-209.
[15] Li X, Liu Z, Wu H, et al. On the application of fractal analysis and wavelet in NEMP signal processing[J]. Nuclear Electronics and Detection Technology, 2004, 24(2): 143-146.
[16] Jacobson A R, Knox S O, Franz R, et al. FORTE observations of lightning radio-frequency signatures: Capabilities and basic results[J]. Radio Science, 1999, 34(2): 337-354.
[17] Heavner M J, Smith D A, Harlin J. Current Los Alamos sferic array studies[R]. Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2000.
[18] 张旭荣 , 张妙兰,刘新中 . 小波变换在核爆电磁脉冲信号识别中的应用 [J]. 电子与信息学报 , 1999, 21(5):710-712.
ZHANG Xu-rong, ZHANG Miao-lan, LIU Xin-zhong. Studies of recognition methods of nuclear and ligh tning pulse signals with applications of wavelet transform[J]. Journal of Electronics, 1999,21(5):710 712.
[19] 张仲山, 张恩山, 高春霞. 小波分析在核爆与闪电识别中的应用[J]. 电波科学学报, 2000, 15(4):5.
ZHANG Zhong-shan, ZHANG En-shan, GAO Chun-xia. The application of wavelet analysis to recognition of nuclear explosion and lightning[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2000, 15(4):5.
[20] Li C, Feng D. Feature extraction of the NEMP waveforms based on the wavelet, fractal and genetic algorithm[J].
[21] 王浩骅,苗家友,朱万华,等 . 神经网络识别算法去除核爆电磁脉冲探测闪电干扰 [J]. 核电子学与探测技术 ,2021,41(01):92-97.
WANG Hao-hua, MIAO Jia-you, ZHU Wan-hua, et al. Neural Network Identification Algorithm to Remove Lightning Interference from Nuclear Explosion EMP Detection[J]. Nuclear Electronics and Detection Technology, 2021,41(01): 92-97.
[22] Eads D R, Hill D, Davis S, et al. Genetic algorithms and support vector machines for time series classification[C]//Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation V. International Society for Optics and Photonics, 2002, 4787: 74-85.
[23] Li P, Song L, Han C, et al. Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network[J]. High Power Laser and Particle Beams, 2010, 22(12): 3052-3056.
[24] Li J, Si Y, Xu T, et al. Deep convolutional neural network based ECG classification system using information fusion and one-hot encoding techniques[J]. Mathematical problems in engineering, 2018, 2018.
[25] Aytar Y, Vondrick C, Torralba A. Soundnet: Learning sound representations from unlabeled video[J]. Advances in neural information processing systems, 2016, 29.
[26] Liu Y, Yao X. Ensemble learning via negative correlation[J]. Neural networks, 1999, 12(10): 1399-1404.
[27] Han H, Wang W Y, Mao B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//International conference on intelligent computing. Springer, Berlin, Heidelberg, 2005: 878-887.
[28] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16: 321-357.
[29] He H, Bai Y, Garcia E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]//2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). IEEE, 2008: 1322-1328.
[30] Ditterrich T G. Machine learning research: four current direction[J]. Artificial intelligence magzine, 1997, 4: 97-136.
[31] Houghten R A, Harvey R B. Accuracy and Reliability of a Short-Baseline Narol System[R]. AIR FORCE CAMBRIDGE RESEARCH CENTER BEDFORD MA ELECTRONICS RESEARCH DIRECTORATE, 1957.
[32] LIU F F, QIN Z L, ZHU B Y, et al. Observations of ionospheric D layer fluctuations during sunrise and sunset by using time domain waveforms of lightning narrow bipolar events[J]. Chinese journal of geophysics, 2018, 61(2): 484-493.
[33] QIN Z L, ZHU B Y, MA M, et al. Using time domain waveforms of return strokes to retrieve the daytime fluctuation of ionospheric D layer[J]. Chinese Science Bulletin, 2015, 60(7): 654-663.
[34] Chen T, He T, Benesty M, et al. Xgboost: Extreme Gradient Boosting, R Package Version 0.4-2; 2015[J]. 2016.
[35] Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM transactions on intelligent systems and technology (TIST), 2011, 2(3): 1-27.
[36] Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013.
[37] Safavian S R, Landgrebe D. A survey of decision tree classifier methodology[J]. IEEE transactions on systems, man, and cybernetics, 1991, 21(3): 660-674.
[38] Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[J]. Advances in neural information processing systems, 2018, 31.
[39] Chen T, Guestrin C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016: 785-794.
[40] Wang H, Yang Y, Wang H, et al. Soft-voting clustering ensemble[C]//International Workshop on Multiple Classifier Systems. Springer, Berlin, Heidelberg, 2013: 307-318.
[41] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[42] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
[43] Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
PDF(840 KB)

237

Accesses

0

Citation

Detail

Sections
Recommended

/