Degradation trend prediction of rolling bearings based on CAE and AGRU

JIAO Lingling1,CHEN Jie1,2,LIU Lianhua1

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (12) : 109-117.

PDF(2056 KB)
PDF(2056 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (12) : 109-117.

Degradation trend prediction of rolling bearings based on CAE and AGRU

  • JIAO Lingling1,CHEN Jie1,2,LIU Lianhua1
Author information +
History +

Abstract

Aiming at problems of health indictor construction depending on prior knowledge and prediction accuracy being low for rolling bearing performance degradation trend prediction method in rotating machinery, a prediction method for rolling bearing degradation trend based on convolutional auto-encodes(CAE) and attention gated recurrent unit(AGRU) was proposed.Firstly, the method converted the rolling bearing time domain signal into frequency domain signal with fast fourier transform(FFT), and the features were extracted adaptively from frequency domain signal with convolutional auto-encodes.Then, the health indicators werw constructed from encoding features with evaluating and delsting. Finally the health indicators were input into the attention gated recurrent unit mode, and the pruning algorithm optimized the parameters to predict the performance degradation trend of rolling bearings. Results showed that the proposed method can obtain more accurate prediction results for rolling bearing performance degradation trend.

Key words

rolling bearing / degradation trend prediction / convolutional auto-encoders(CAE) / gated recurrent unit(GRU) / attention mechanism

Cite this article

Download Citations
JIAO Lingling1,CHEN Jie1,2,LIU Lianhua1. Degradation trend prediction of rolling bearings based on CAE and AGRU[J]. Journal of Vibration and Shock, 2023, 42(12): 109-117

References

[1] LEI Y G,  LI N P, GUO L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834.
[2] GUO L, LEI Y G, LI N P, et al. Machinery health indicator construction based on convolutional neural networks considering trend burr[J]. Neurocomputing, 2018, 292:  142-150.
[3] XU F, HUANG Z L, YANG F F, et al. Constructing a health indicator for roller bearings by using a stacked auto-encoder with an exponential function to eliminate concussion[J]. Applied Soft Computing, 2020, 89: 106119.
[4] DING N, LI H, YIN Z W, et al. Journal bearing seizure degradation assessment and remaining useful life prediction based on long short-term memory neural network[J]. Measurement, 2020, 166: 108-215.
[5] 赵光权, 刘小勇, 姜泽东, 等. 基于深度学习的轴承健康因子无监督构建方法[J]. 仪器仪表学报, 2018, 39(06):  82-88.
ZHAO Guangquan, LIU Xiaoyong, JIANG Zedong et al. Unsupervised health indicator of bearing based on deep learning[J]. Chinese Journal of Scientific Instrument, 2018, 39(06): 82-88.
[6] CHEN L T, XU G H, ZHANG S, et al. Health indicator construction of machinery based on end-to-end trainable convolution recurrent neural networks[J]. Manuf Syst, 2020, 54: 1–11.
[7] 肖婷, 汤宝平, 秦毅, 等. 基于流形学习和最小二乘支持向量机的滚动轴承退化趋势预测[J]. 振动与冲击, 2015, 34(09): 149-153.
XIAO Ting, TANG Baoping, QING Yi, et al. Degradation trend prediction of rolling bearing based on manifold learning and least squares support vector machine[J]. Journal of Vibration and shock, 2015, 34(09): 149-153.
[8] CHEN Z H, WU M, ZHAO R, et al. Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 21-31.
[9] GAO S H, XIONG X, ZHOU Y F, et al. Bearing Remaining Useful Life Prediction Based on a Scaled Health Indicator and a LSTM Model with Attention Mechanism[J]. Machines, 2021, 9(10): 238-263.
[10] WU J Y, WU M, CHEN Z, et al. Degradation-Aware Remaining Useful Life Prediction With LSTM Autoencoder[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10.
[11] 陈浩. 基于深度学习的直升机关键部件故障预测方法研究[D]. 长沙: 国防科技大学, 2019.
[12] 曾大懿, 蒋雨良, 邹益胜, 等. 一种新的轴承寿命预测特征评价指标构建与验证[J]. 振动与冲击, 2021, 40(22): 18-27.
ZENG Dayi, JIANG Yuliang, ZOU Yisheng, et al. Construction and verification of a new evaluation index for bearing life prediction characteristics[J]. Journal of Vibration and shock, 2021, 40(22): 18-27.
[13] GUO R, WANG Y, ZHANG H, et al. Remaining Useful Life Prediction for Rolling Bearings Using EMD-RISI-LSTM[J]. IEEE Transactions on Instrumentation and Measurement, 2021: 1-12.
[14] 王鹏, 邓蕾, 汤宝平, 等. 基于自编码器和门限循环单元神经网络的滚动轴承退化趋势预测[J]. 振动与冲击, 2020, 39(17): 106-111+133.
WANG Peng, DENG Lei, TANG Baoping, et al. Degradation trend prediction of rolling bearing based on auto-encoder and GRU neural network[J]. Journal of Vibration and shock, 2020, 39(17): 106-111+133.
[15] CHEN Y H, PENG G L, ZHU Z Y, et al. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing, 2020, 86: 105919.
[16] XIA J, FENG Y W, LU C, et al. LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems[J]. Engineering Failure Analysis, 2021, 125: 105385.
[17] 赵志宏, 李晴, 杨绍普, 等. 基于BiLSTM与注意力机制的剩余使用寿命预测研究[J]. 振动与冲击, 2022, 41(06): 44-50+196.
ZHAO Zhihong, LI Qing, YANG Shaopu, et al. Remaining useful life prediction based on BiLSTM and attention mechanism[J]. Journal of Vibration and shock, 2022, 44(06): 44-50+196.
[18] 姚德臣, 李博阳, 刘恒畅, 等. 基于注意力GRU算法的滚动轴承剩余寿命预测[J]. 振动与冲击, 2021, 40(17): 116-123.
YAO Dechen, LI Boyang, LIU Hengchang, et al. Residual life prediction of rolling bearing based on attention GRU algorithm[J]. Journal of Vibration and shock, 2021, 40(17): 116-123.
[19] Rai A, Upadhyay S H. The Use of MD-CUMSUM and NARX Neural Network for Anticipating the Remaining Useful Life of Bearings[J]. Measurement, 2017, 111:   397-410.
[20] TIAN Q P, WANG H L. An Ensemble Learning and RUL Prediction Method Based on Bearings Degradation Indicator Construction[J]. Applied Sciences, 2020, 10(1): 346-367.
[21] WANG P, LONG Z Q, WANG G. A hybrid prognostics approach for estimating remaining useful life of wind turbine bearings[J]. Energy Reports, 2020, 6: 173-182.
[22] 张典震, 陈捷, 王华, 等. 基于卷积自编码与密集时间卷积网络的回转支承退化趋势预测[J]. 振动与冲击, 2021, 40(23): 9-16.
ZHANG Dianzhen, CHEN Jie, WANG Hua, et al. Prediction of slewing support degradation trend based on CAE and DTCN[J]. Journal of Vibration and shock, 2021, 40(23):   9-16.
PDF(2056 KB)

Accesses

Citation

Detail

Sections
Recommended

/