Free transverse vibration of composite laminated beam restrained by torsion springs

CHEN Qingyuan, LI Jing, FANG Pengya, PEI Shixun, LIU Shuangyan, SU Yi

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (13) : 170-176.

PDF(744 KB)
PDF(744 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (13) : 170-176.

Free transverse vibration of composite laminated beam restrained by torsion springs

  • CHEN Qingyuan, LI Jing, FANG Pengya, PEI Shixun, LIU Shuangyan, SU Yi
Author information +
History +

Abstract

Based on the Galerkin method, an explicit analytical solution for free vibration of laminated composite beams with the boundary ends elastically-restrained against rotation is presented. In order to avoid the numerical instability of the classical vibration eigenfunction of higher order (≥11) modes, the transverse deflection functions of the rotationally-restrained laminated composite beams are constructed through a unique weighting combination of (modified) vibration eigenfunctions of hinged-hinged, fixed-fixed, hinged-fixed and fixed-hinged beams. The validity study shows that the present explicit analytical solution is effective in performing free vibration analyses of laminated composite beams with ends elastically-restrained against rotation.

Key words

free vibration / rotationally-restrained / laminated composite beams / Glerkin method / an explicit analytical solution 

Cite this article

Download Citations
CHEN Qingyuan, LI Jing, FANG Pengya, PEI Shixun, LIU Shuangyan, SU Yi. Free transverse vibration of composite laminated beam restrained by torsion springs[J]. Journal of Vibration and Shock, 2023, 42(13): 170-176

References

[1]. 马斌捷,周书涛,贾亮, 等. 端部带质量和弹簧约束悬臂梁振动响应的解析解[J]. 北京航空航天大学学报, 2019, 45 (05): 883-892.
MA Binjie, ZHOU Shutao, JIA Liang, et al. Vibration response analytical solutions of cantilever beam with tip mass and spring constraints[J]. Journal of Beijing University of Aeronautics and  Astronautics, 2019, 45(5): 883-892.
[2]. Ding, H.,Li, Y.,Chen, L.-Q. Nonlinear vibration of a beam with asymmetric elastic supports[J]. Nonlinear Dynamics, 2019, 95 (3): 2543-2554.
[3]. Ghannadiasl, A.,Mofid, M. An analytical solution for free vibration of elastically restrained Timoshenko beam on an arbitrary variable Winkler foundation and under axial load[J]. Latin American Journal of Solids and Structures, 2015, 12 (13): 2417-2438.
[4]. Xing, J.-Z.,Wang, Y.-G. Free vibrations of a beam with elastic end restraints subject to a constant axial load[J]. Archive of Applied Mechanics, 2013, 83 (2): 241-252.
[5]. Wang, D. Optimal design of an intermediate support for a beam with elastically restrained boundaries[J]. Journal of Vibration and Acoustics, 2011, 133 (3).
[6]. Luo, J.,Zhu, S.,Zhai, W. Exact closed-form solution for free vibration of Euler-Bernoulli and Timoshenko beams with intermediate elastic supports[J]. International Journal of Mechanical Sciences, 2022, 213 106842.
[7]. Li, W. L. Free vibrations of beams with general boundary conditions[J]. Journal of Sound and vibration, 2000, 237 (4): 709-725.
[8]. Li, W. Comparison of Fourier sine and cosine series expansions for beams with arbitrary boundary conditions[J]. Journal of sound and vibration, 2002, 255 (1): 185-194.
[9]. 赵雨皓,杜敬涛,许得水. 轴向载荷条件下弹性边界约束梁结构振动特性分析[J]. 振动与冲击, 2020, 39 (15): 109-117.
ZHAO Yuhao, DU Jingtao, XU Deshui. Vibration characteristics analysis for an axially loaded beam with elastic boundary restraints[J]. Journal of Vibration and Shock, 2020, 39(15): 109-117.
[10]. Monterrubio, L.,Ilanko, S. Proof of convergence for a set of admissible functions for the Rayleigh–Ritz analysis of beams and plates and shells of rectangular planform[J]. Computers & Structures, 2015, 147 236-243.
[11]. Zhang, C.,Wang, Q. Free vibration analysis of elastically restrained functionally graded curved beams based on the Mori–Tanaka scheme[J]. Mechanics of Advanced Materials and Structures, 2019, 26 (21): 1821-1831.
[12]. Ye, T.,Jin, G.,Ye, X., etc. A series solution for the vibrations of composite laminated deep curved beams with general boundaries[J]. Composite Structures, 2015, 127 450-465.
[13]. Shi, D.,Wang, Q.,Shi, X., etc. An accurate solution method for the vibration analysis of Timoshenko beams with general elastic supports[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229 (13): 2327-2340.
[14]. Hao, Q.,Zhai, W.,Chen, Z. Free vibration of connected double-beam system with general boundary conditions by a modified Fourier–Ritz method[J]. Archive of Applied Mechanics, 2018, 88 (5): 741-754.
[15]. Wang, Q.,Shi, D.,Liang, Q. Free vibration analysis of axially loaded laminated composite beams with general boundary conditions by using a modified Fourier–Ritz approach[J]. Journal of Composite Materials, 2016, 50 (15): 2111-2135.
[16]. 鲍四元,曹津瑞. 具有任意弹性边界单跨梁结构的振动特性分析[J]. 苏州科技大学学报: 自然科学版, 2019, 36 (1): 16-20.
BAO Siyuan, CAO Jinrui. Analysis of vibration characteristics of single-span beam structure with arbitrary elastic boundary conditions[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2019, 36 (1): 16-20.
[17]. Mahapatra, K.,Panigrahi, S. Vibration characteristics of a beam with generalised end supports[J]. International Journal of Structural Engineering, 2016, 7 (2): 193-215.
[18]. Kim, K.,Kim, S.,Sok, K., etc. A modeling method for vibration analysis of cracked beam with arbitrary boundary condition[J]. Journal of Ocean Engineering and Science, 2018, 3 (4): 367-381.
[19]. Kim, K.,Choe, K.,Kim, S., etc. A modeling method for vibration analysis of cracked laminated composite beam of uniform rectangular cross-section with arbitrary boundary condition[J]. Composite Structures, 2019, 208 127-140.
[20]. Kim, S.,Kim, K.,Ri, M., etc. A semi-analytical method for forced vibration analysis of cracked laminated composite beam with general boundary condition[J]. Journal of Ocean Engineering and Science, 2021, 6 (1): 40-53.
[21]. 赵长龙,钟锐,周强, 等. 弹性约束边界条件下复合材料层合梁振动特性研究[J]. 机械科学与技术, 2020, 39 (06): 954-959.
Zhao Changlong,Zhong Rui,Zhou Qiang, et al. Vibration analysis of laminated composite beams with elastic boundary conditions. Mechanical Science and Technology for Aerospace Engineering, 2020, 39 (06): 954-959.
[22]. So, S.-R.,Yun, H.,Ri, Y., etc. Haar wavelet discretization method for free vibration study of laminated composite beam under generalized boundary conditions[J]. Journal of Ocean Engineering and Science, 2021, 6 (1): 1-11.
[23]. Moreno-García, P.,dos Santos, J. V. A.,Lopes, H. A review and study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates[J]. Archives of Computational Methods in Engineering, 2018, 25 (3): 785-815.
[24]. Gibson, R. F. Principles of composite material mechanics[M]. CRC press, 2016.
[25]. Reddy, J. N. Mechanics of laminated composite plates and shells: theory and analysis[M]. CRC press, 2003.
[26]. Barbero, E. J. Introduction to composite materials design[M]. CRC press, 2017.
PDF(744 KB)

695

Accesses

0

Citation

Detail

Sections
Recommended

/