Oscillation criteria of second order Emden-Fowler time-delay differential equations with a sub-linear neutral term

ZENG Yunhui1, LUO Huihui2, WANG Yilin1, LUO Liping1, YU Yuanhong3

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (13) : 50-57.

PDF(594 KB)
PDF(594 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (13) : 50-57.

Oscillation criteria of second order Emden-Fowler time-delay differential equations with a sub-linear neutral term

  • ZENG Yunhui1, LUO Huihui2, WANG Yilin1, LUO Liping1, YU Yuanhong3
Author information +
History +

Abstract

The paper is devoted to the study of oscillation of solutions to second-order Emden-Fowler delay differential equations containing a sub-linear neutral term of the form  where  are quotient of odd positive integers, and  By using the Riccati substitution , integral averaging and inequality techniques, three new oscillation criteria for the equation are established. which extend classical Leighton and Kneser  oscillation criteria to super-linear Emden-Fowler delay differential equation. And, we not only extend but also improve several results about the cases of   or in the literature, recently. The effectiveness of the obtained criteria are illustrated via examples.

Cite this article

Download Citations
ZENG Yunhui1, LUO Huihui2, WANG Yilin1, LUO Liping1, YU Yuanhong3. Oscillation criteria of second order Emden-Fowler time-delay differential equations with a sub-linear neutral term[J]. Journal of Vibration and Shock, 2023, 42(13): 50-57

References

[1]W. Leighton.The diction of oscillation of solutions of Second order linear differential equation[J]. Duke Mathematical Journal,1950,17 :57-62.
[2]A.Kneser. Untersuchungen umber die reellen nullstellen der integrale lineare differential- gleichungen[J]. Mathematische Annalen,1893, 42(3):409-435.
[3]S.Tamilvanan,E,Thandapani,S.R,Grace. Oscillation theorems for second order nonlinear differential equation with a nonlinear neutral term[J]. International Journal Dynamics System Differential Equations, 2017,7(4):316-327.
[4]W.F.Trench. Canonical forms and principal systems for general dis-conjugate equations[J],   Trans Amer Math Soc ,1973,189:319-327.
[5] R. P. Agarwal, S. R.Grace, D. O'Regan. Oscillation Theory for Second Order Linear, Half-linear, Super-linear and Sub-linear Dynamic Equations[M]. Kluwer Academic Publishers, Dordrecht, 2002.
[6] R. P. Agarwal, S. R. Grace, D. O'Regan. Oscillation Theory for Second Order Dynamic Equations[M]. Series in Mathematical Analysis and Applications, Vol. 5,Taylor & Francis , London, 2003.
[7] J. S. W, Wong. On the generalized Emden-fowler equation[J]. SIAM Rev, 1975, 17: 339 -360.
[8] J. K. Hale. Theory of Functional Differential Equations[M]. Springer, New York,1977.
[9] R. P. Agarwal, M. Bohner, T.X.Li, C.H.Zhang. Oscillation of second-order differential equations with a sublinear neutral term[J]. Carpathian Journal Mathematics. 2014,30(1):1-6.
[10] S.R.Grace,I.Jadlovska,A,Zafer, On oscillation of second order delay differential equations with a sublinear neutral term[J]. Mediterranean Journal Of Mathematics, 2020, 17:1-16.
[11] S.Tamilvanan,E.Thandapani,J.Dzurina,Oscillation of second order nonlinear differential equation with Sub-linear neutral term[J]. Journal Of difference Equations And Applications, 2017,9(1):29-35.
[12] 孙喜东,俞元洪.具有次线性中立项的Emden-Fowler中立型微分方程的振动性[J]. 应用数学学报. 2020,43(5):771-780.
    X. D. Sun, Y. H. Yu. Oscillation of Emden-Fowler neutral differential equation with sublinear
Term[J]. Acta Mathematicae Applicatae Sinica, 2020,43(5):771-780.
[13] W.Leighton. The detection of the oscillation of solutions of a second order linear differential equations[J].Duke Mathematical journal, 1950,17:57-61.
[14] M.K.GrammatiKopoulos,G.Ladas,A,Meimaridou. Oscillations of second order neutral delay differential equations[J]. Rad. Mat. ,1985,1:267-274.
[15] I.Jadlovska,J.Dzurina. Kneser-type oscillation criteria for second order half-linear delay differential equations[J]. Applied Mathematics and Computation, 2020,380:125289.
[16] J. Dzurina, I. JadlovsKa. A sharp oscillation result for second -order half-linear non-canonical delay differential equations[J].Electronic Journal of Qualitative Theory of Differential Equati-
   ons, 2020,46:1-14.
[17] O.Bazighifan,C.Cesarano. Some new oscillation criteria for second order neutral differential equations with delayed arguments[J]. Mathematics, 2019,7:619.
[18] J. Dzurina , I. Jadlovska . A note on oscillation of second order delay differential equations[J].
   Applied Mathematics Letters ,2017,69:126-132.
[19] S.R.Grace,J.Dzurina,I.JadlovsKa,T.X.Li. An improved approach for studying oscillation of second order neutral delay differential equations[J]. Journal Inequalities and Applications,
2018,2018:193.
[20] O. Moaaz. New criteria for oscillation of nonlinear neutral differential equations[J].  Advances Differential Equations. 2019, 2019:484.
[21]S. S. Santra,O. Bazighifan,H. Ahmad,Y. M.chu. Second-order differential equation:Oscillation theorems and applications[J]. Mathematical Problems in Engineering, 2020,DOI:10.1155/
2020/8820066.
[22] G.H.Hardy,J,E,Littlewood,G.Polya. Inequalities.2ndedition[M].Cambridge University Press,
London, 1988.
[23] B.Baculikova,J.Dzurina. Oscillation theorems for second order nonlinear neutral differential equations[J]. Computers & Mathematics With Applications , 2011,62:4472-4478.
[24]L.Erbe,T.S.Hassan,A.Pterson. Oscillation of second order neutral delay differential equations[J], Advanced Dynanics System Apply, 2008,1:53-71.
PDF(594 KB)

Accesses

Citation

Detail

Sections
Recommended

/