Water immersion nonlinear ultrasonic wave mixing method for fatigue crack inspection

L Hongtao1,JIAO Jingpin2,WANG Juntao1,LIU Zhiyi1,LI Feng1,ZHANG Xiangchun1,SHI Liang1

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (14) : 204-210.

PDF(2736 KB)
PDF(2736 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (14) : 204-210.

Water immersion nonlinear ultrasonic wave mixing method for fatigue crack inspection

  • L Hongtao1,JIAO Jingpin2,WANG Juntao1,LIU Zhiyi1,LI Feng1,ZHANG Xiangchun1,SHI Liang1
Author information +
History +

Abstract

The water-immersion non collinear shear wave mixing method was researched for fatigue crack detection in this paper. Using the developed water-immersion non-collinear shear wave mixing detection system and signal processing method of polarity reversal, the experiments of fatigue crack inspection were carried out, and the influence of the two exciting waves’ interaction angle and frequency ratio on wave mixing effect were studied. Then, the two-dimensional automatic scanning inspection was conducted on the sample blocks with fatigue crack. It is shown that the polarity reversal method can be used for wave mixing effect extraction. The optimal interaction angle and frequency ratio in the case of fatigue crack deviate from the resonance conditions. The fatigue cracks in the steel structure can be detected, located and quantified by using the two-dimensional scanning of shear wave mixing. The work makes a beneficial exploration for the engineering application of nonlinear ultrasonic wave mixing.

Key words

non-destructive testing / fatigue crack / water immersion / wave mixing / nonlinear ultrasonic

Cite this article

Download Citations
L Hongtao1,JIAO Jingpin2,WANG Juntao1,LIU Zhiyi1,LI Feng1,ZHANG Xiangchun1,SHI Liang1. Water immersion nonlinear ultrasonic wave mixing method for fatigue crack inspection[J]. Journal of Vibration and Shock, 2023, 42(14): 204-210

References

[1] 陈传尧. 疲劳与断裂[M]. 华中科技大学出版社, 2002.
CHEN Chuanxiao. Fatigue and fracture [M]. Huazhong University of science and Technology Press, 2002.
[2] 刘永强, 杨世锡, 刘学坤. 基于激光超声的金属构件表面微裂纹定量检测技术研究[J]. 振动与冲击, 2019, 19: 14-19.
CHEN Yongqiang, YANG Shixi, LIU Xueshen. Micro-crack quantitative detection technique for metal component surface based on laser ultrasonic [J]. Journal of vibration and shock, 2019, 19: 14-19.
[3] 周正干,刘斯明. 非线性无损检测技术的研究、应用和发展[J]. 机械工程学报,2011,47(8):2-11.
ZHOU Zhenggan, LIU Siming. Nonlinear ultrasonic techniques used in nondestructive testing: a review [J]. Journal of mechanical engineering,2011,47(8):2-11.
[4] 李明轩, 王小民, 安志武. 粘接界面特性的超声检测与评价[J]. 应用声学, 2013 (3): 190-198.
LI Mingxuan, WANG Xiaomin, AN Zhiwu. Ultrasonic testing and evaluation of bonding interface properties [J]. Applied Acoustics, 2013 (3): 190-198.
[5] 刘松平, 李乐刚, 刘菲菲等.大厚度扩散焊 NLU 成像检测技术[J]. 航空制造技术, 2017 (5): 32-37.
LIU Songping, LI Legang, LIU Feifei, et al. Evaluation of thick diffusion bonds by using NLU imaging method [J]. Aeronautical manufacturing technology, 2017 (5): 32-37.
[6] 颜丙生, 杨明超, 赵俊杰, 等. 0Cr17Ni4Cu4Nb 不锈钢早期损伤非线性驻波法检测[J]. 振动与冲击, 2019, 13:151-157.
YAN Bingsheng, YANG Mingchao, ZHAO Junjie, et al. 0Cr17Ni4Cu4Nb stainless steel early damage detection using nonlinear standing wave method [J]. Journal of vibration and shock, 2019, 13:151-157.
[7] 毛汉颖, 秦国力, 黎庆柱, 等. 45 号钢受热损伤的超声非线性检测实验研究[J]. 振动与冲击, 2020, 39(21): 279-283.
MAO Hanying, QIN Guoli, LI Qingzhu, et al. Ultrasonic non-linear detection tests for 45 steel thermal damage [J]. Journal of vibration and shock, 2020, 39(21): 279-283.
[8] 苑  博, 税国双, 汪越胜. 非线性超声混频检测技术在无损检测中的研究进展[J]. 机械工程学报, 2020, 55(16): 33-46.
YUAN Bo, SHUI Guoshuang, WANG Yuesheng. Advance in research of nolinear ultrasonic wave mixing detection technology in non-destructive evaluation [J]. Journal of mechanical engineering, 2020, 55(16): 33-46.
[9] Croxford A J, Wilcox P D, Drinkwater B W, et al. The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue[J]. The Journal of the Acoustical Society of America, 2009, 126(5): EL117-EL122.
[10] Sun M, Xiang Y, Deng M, et al. Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity[J]. NDT & E International, 2018, 93: 1-6.
[11] 银  信, 朱武军, 孙茂循, 等. 裂纹尖端塑性区非线性超声混频定位表征[J]. 声学学报, 2021.
YIN Xin, ZHU Wujun, SUN Maoxun, et al. Localization and characterization of the plastic zone near the crack tip by nonlinear ultrasonic mixing method [J]. Acta Acustica, 2021.
[12] Jiao J, Lv H, He C, et al. Fatigue crack evaluation using the non-collinear wave mixing technique[J]. Smart Materials and Structures,2017,26(6):065005.
[13] Demčenko A, Akkerman R, Nagy P B, et al. Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC[J]. NDT & E International, 2012, 49(4): 34-39.
[14] Escobar-Ruiz E, Ruiz A, Hassan W, et al. Non-linear ultrasonic NDE of titanium diffusion bonds[J]. Journal of Nondestructive Evaluation, 2014, 33(2): 187-195.
[15] Zhang Z, Nagy P B, Hassan W. On the feasibility of nonlinear assessment of fatigue damage in hardened IN718 specimens based on non-collinear shear wave mixing[C]. AIP Conference Proceedings, 2016, 1706(1): 060003.
[16] Zhang Z, Nagy P B, Hassan W. Enhanced nonlinear inspection of diffusion bonded interfaces using reflected non-collinear ultrasonic wave mixing[C]. AIP conference proceedings, 2016, 1706(1): 020023.
[17] Alston J, Croxford A, Potter J, et al. Nonlinear non-collinear ultrasonic detection and characterisation of kissing bonds[J]. NDT & E International, 2018, 99: 105-116.
[18] Lv H, Zhang J, Jiao J, et al. Fatigue crack inspection and characterisation using non-collinear shear wave mixing[J]. Smart Materials and Structures, 2020, 29(5): 055024.
[17] Jones G L, Kobett D R. Interaction of elastic waves in an isotropic solid[J]. The Journal of the Acoustical society of America, 1963, 35(1): 5-10.
[20] Zarembo L K, Krasil'nikov V A. Nonlinear phenomena in the propagation of elastic waves in solids[J]. Soviet Physics Uspekhi, 1971, 13(6): 778.
[21] Korneev V A, Demčenko A. Possible second-order nonlinear interactions of plane waves in an elastic solid[J]. The Journal of the Acoustical Society of America, 2014, 135(2): 591-598.
[22] Kuhlmann-Wilsdorf D, Laird C. Dislocation behavior in fatigue[J]. Materials Science and Engineering, 1977, 27(2): 137-156.
PDF(2736 KB)

Accesses

Citation

Detail

Sections
Recommended

/