Damping characteristics of filling layer self-compacting concrete applied in a slab track system

CHEN Junhao1,XIE Youjun1,ZENG Xiaohui1,LIU Jinhui2,GUO Taoming2,GUAN Jibo3,LONG Guangcheng1

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (14) : 211-219.

PDF(2536 KB)
PDF(2536 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (14) : 211-219.

Damping characteristics of filling layer self-compacting concrete applied in a slab track system

  • CHEN Junhao1,XIE Youjun1,ZENG Xiaohui1,LIU Jinhui2,GUO Taoming2,GUAN Jibo3,LONG Guangcheng1
Author information +
History +

Abstract

Damping properties have an important influence on the dynamic behavior of civil engineering structures. However, there has been no research on the damping performance of filling layer self-compacting concrete (SCC) of subway slab track. In this paper, the MTS test system was used to study the influence law and variation mechanism of different stress amplitude, rubber content and size on the hysteretic energy and loss factor of SCC, and the hysteretic energy of SCC was numerically simulated. The results showed that the hysteretic energy of SCC increased first slowly and then rapidly with the increase of stress amplitude, which was closely related to its damage evolution and dynamic elastic modulus degradation, and the energy dissipation of internal defects was the main damping mechanism of SCC; The hysteretic energy was a power function relationship with the stress amplitude, among them, the power exponent value of SCC was the smallest, indicating that the nonlinear degree of SCC was the lowest; Rubber significantly increased the damping performance of SCC. Under the same stress amplitude, the hysteresis energy of SCC increased with the increase of rubber content and the decrease of size. The Kelvin model can be used to simulate the hysteretic energy of SCC under cyclic loading, and the theoretical value was in good agreement with the experimental value.

Key words

damping / filling layer / self-compacting concrete (SCC) / hysteretic energy / Kelvin model

Cite this article

Download Citations
CHEN Junhao1,XIE Youjun1,ZENG Xiaohui1,LIU Jinhui2,GUO Taoming2,GUAN Jibo3,LONG Guangcheng1. Damping characteristics of filling layer self-compacting concrete applied in a slab track system[J]. Journal of Vibration and Shock, 2023, 42(14): 211-219

References

[1] LEI D, ZHANG P, HE J T, et al. Fatigue life prediction method of concrete based on energy dissipation[J]. Construction and Building Materials, 2017, 145(1): 419-425.
[2] 马昆林, 万镇昂, 龙广成, 等. 板式轨道充填层SCC疲劳损伤本构模型[J]. 铁道学报, 2020, 42(11): 139-145.
 MA Kunlin, WAN Zhen’ang, LONG Guangcheng, et al. Fatigue damage constitutive model of slab track filling layer SCC[J]. Journal of the China Railway Society, 2020, 42(11): 139-145.
[3] 龙广成, 杨振雄, 白朝能, 等. 荷载-冻融耦合作用下充填层自密实混凝土的耐久性及损伤模型[J]. 硅酸盐学报, 2019, 47(7): 855-864.
 LONG Guangcheng, YANG Zhenxiong, BAI Chaoneng, et al. Durability and damage constitutive model of filling layer self-compacting concrete subjected to coupling action of freeze-thaw cycles and load[J]. Journal of the Chinese Ceramic Society, 2019, 47(7): 855-864.
[4] 龙广成, 李宁, 谢友均, 等. 板式轨道充填层自密实混凝土的动态力学特性[J]. 铁道科学与工程学报, 2018, 15(6): 1364-1372.
LONG Guangcheng, LI Ning, XIE Youjun, Dynamic mechanical properties of filling layer self-compacting concrete applied in slab track system[J]. Journal of Railway Science and Engineering, 2018, 15(6): 1364-1372.
[5] AUGUSTI G. Dynamics of structures: Theory and applications to earthquake engineering[J]. Engineering Structures, 1995, 17(6): 337.
[6] SPENCE S, KAREEM A. Tall Buildings and Damping: A Concept-Based Data Driven Model[J]. Journal of Structural Engineering, 2013, 140(5): 155-164.
[7] 薛刚, 张宪法, 曹美玲. 考虑温度效应的橡胶混凝土阻尼耗能性能试验研究[J]. 振动与冲击, 2020, 39(19): 94-100.
XUE Gang, ZHANG Xianfa, CAO Meiling. Tests for damping energy-dissipation performance of rubber concrete considering temperature effect[J]. Journal of Vibration and Shock, 2020, 39(19): 94-100.
[8] LIU F, MENG L Y, NING G F, et al. Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement[J]. Construction and Building Materials, 2015, 95(1): 207-217.
[9] SAKDIRAT K, LI Dan, Chen YU, et al. Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tire Crumb Rubber[J]. Materials, 2018, 11(7): 1169.
[10] LIU B D, YANG S Z, LI W L, et al. Damping dissipation properties of rubberized concrete and its application in anti-collision of bridge piers[J]. Construction and Building Materials, 2020, 236: 117286.
[11] GB175-2007, 通用硅酸盐水泥 [S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2007.
[12] GB/T 1596-2017, 用于水泥和混凝土中的粉煤灰 [S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2017.
[13] GB/T 18046-2017, 用于水泥、砂浆和混凝土中的粒化高炉矿渣粉 [S]. 北京:  中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2017.
[14] TB/T3275-2018, 铁路混凝土[S]. 北京: 中国国家铁路局, 2018.
[15]  JGJ/T283-2012, 自密实应用技术规程[S]. 北京: 中华人民共和国住房和城乡建设部, 2012.
[16] ASTM C1611/C1611M-14, Standard Test Method for Slump Flow of Self-consolidating Concrete [S]. West Conshohocken: ASTM International, 2014.
[17] GB-T 50081-2019, 混凝土物理力学性能试验方法标准[S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2019.
[18] 梅生启. 混凝土静动态粘弹性能研究[D]. 北京: 北京交通大学, 2019.
[19] 马林建, 刘基程, 张宁, 等. 循环荷载作用下珊瑚混凝土的阻尼特性[J]. 硅酸盐学报, 2020, 48(11): 1765-1770.
MA Linjian, LIU Jicheng, ZHANG Ning, et al. Damping Characteristics of Coral Concrete Under Cyclic Loading[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1765-1770.
[20] 苏力. 混凝土静动态粘弹性性能的理论及试验研究[D]. 北京: 北京交通大学, 2017.
[21] 肖建清, 冯夏庭, 丁德馨, 等. 常幅循环荷载作用下岩石的滞后及阻尼效应研究[J]. 岩石力学与工程学报, 2010, 29(8): 1677-1683.
XIAO Jianqing, FENG Xiating, DING Dexin, et al. Study of hysteresis and damping effects of rock subjected to constant amplitude cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1677-1683.
[22] LIANG C F, XIAO J Z, WANG C H, et al. Hysteretic energy and damping variation of recycled aggregate concrete with different cyclic compression loading levels[J]. Journal of Building Engineering, 2021, 44, 102936.
[23] NAJIM K B, HALL M R. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete[J]. Construction and Building Materials, 2012, 27(1): 521-530.
[24] MEI S Q, SU L, LI P F, et al. Material Damping of Concrete under Cyclic Axial Compression[J]. Journal of Materials in Civil Engineering, 2018, 30(3): 1-10.
[25] JEARY A P.  Damping in structures [J]. Wind Eng. Ind. Aerod. 1997, 72:345–355.
[26] SIDDIKA A, MAMUN M A, ALYOUSEF R, et al. Properties and utilizations of waste tire rubber in concrete: A review [J]. Construction and Building Materials, 2019, 224(Nov. 10): 711-31.
[27] MAKRIS N, ZHANG Jian. Time‐domain viscoelastic analysis of earth structures[J]. Earthquake Engineering and Structural Dynamics, 2015, 29(6): 745-768.
PDF(2536 KB)

225

Accesses

0

Citation

Detail

Sections
Recommended

/