Parameter prediction model of Clough-Penzien power spectrums considering random effects and ground motion synthesis

DING Jiawei1,2, L Dagang1,2, CAO Zhenggang1,2

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (14) : 260-269.

PDF(2107 KB)
PDF(2107 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (14) : 260-269.

Parameter prediction model of Clough-Penzien power spectrums considering random effects and ground motion synthesis

  • DING Jiawei1,2, L Dagang1,2, CAO Zhenggang1,2
Author information +
History +

Abstract

There have existed many investigations on the prediction equations of typical ground motion parameters, such as PGA, PGV, SAS, IA, DS, among other. However, there has been little research on prediction equations of power spectrum model parameters, which represent ground motion frequency-spectrum characteristics. In view of the close relationships between the spectral characteristics of ground motions and source characteristics, propagation path and site conditions, a prediction model of Clough-Penzien power spectrum model parameters is established in this paper based on the physical mechanism of ground motion propagation. In order to better describe the correlation between different records of different seismic events, considering the random effect of the model, the prediction random effect model of spectral parameters is established. The improved one-time iterative regression algorithm of random effects is used to conduct regression analysis on the prediction random effect models of various parameters of Clough-Penzien power spectrum model of various sites, and the model coefficients are determined. Finally, combing with the physical propagation model of phase spectrum and the prediction model of Clough-Penzien power spectrum parameters proposed in this paper, a random function model of "source propagation-site" physical propagation mechanism is constructed. It is shown by a practical example that the prediction equation model of spectral parameters proposed in this paper fits well with the actual power spectrum, and the time-frequency characteristics of the simulated seismic records are very close to those of the original seismic records, so it is helpful to seismic hazard, fragility, and risk analysis as well as seismic design and evaluation of engineering structures.

Key words

Clough-Penzien power spectrum / parameter prediction model / random effect / regression analysis / ground motion synthesis

Cite this article

Download Citations
DING Jiawei1,2, L Dagang1,2, CAO Zhenggang1,2. Parameter prediction model of Clough-Penzien power spectrums considering random effects and ground motion synthesis[J]. Journal of Vibration and Shock, 2023, 42(14): 260-269

References

[1] Gutenberg, B, C F Richter. Magnitude and energy of earthquakes [J]. Annali di Geofisica, 1956, 9(1): 1-15.
[2] Abrahamson N, Silva W. Summary of the Abrahamson & Silva NGA ground-motion relations [J]. Earthquake Spectra, 2008, 24(1): 67-97.
[3] Boore D M, Atkinson G M. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5% damped PSA at spectral periods between 0.01s and 10.0s [J]. Earthquake Spectra, 2008, 24(1): 99-138.
[4] Campbell K W, Eeri A M, Bozorgnia Y, et al. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD, and 5%-damped linear elastic response spectra for periods ranging from 0.01 to 10s, Earthquake Spectra [J]. Earthquake Spectra, 2008, 24(1): 139-171.
[5] Chiou S J, Youngs R R. An NGA model for the average horizontal component of peak ground motion and response spectra [J]. Earthquake Spectra, 2008, 24(1): 173-215.
[6] Idriss I M. An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes [J]. Earthquake Spectra, 2008, 24(1): 217-242.
[7] Abrahamson N, Silva W, Kamai R. Summary of the ASK14 ground-motion relation for active crustal regions [J]. Earthquake Spectra, 2014, 30(3): 1025-1055
[8] Boore D M, Stewart J P, Seyhan E, et al. NGA-West2 equations for predicting PGA, PGV and 5% damped PSA for shallow crustal earthquakes [J]. Earthquake Spectra, 2014, 30(3): 1057-1085.
[9] Campbell K W, Bozorgnia Y. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra [J]. Earthquake Spectra, 2014, 30(3): 1087-1115.
[10] Chiou S J, Youngs R R. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra [J]. Earthquake Spectra, 2014, 30(3): 1117-1153.
[11] Idriss. NGA-West2 model for estimating average horizontal values of pseudo-absolute spectral accelerations generated by crustal earthquakes [R]. PEER Report No. 2013/08, 2013.
[12] 胡聿贤. 地震工程学[M]. 第2版. 北京: 地震出版社, 2006.
Hu Yuxian. Earthquake Engineering [M]. 2 edition. Beijing: Earthquake Press, 2006. (in Chinese)
[13] 霍俊荣, 胡聿贤. 地震动峰值参数衰减规律的研究[J]. 地震工程与工程振动, 1992, 1(02): 1-11.
Huo Junrong, Hu Yuxian. Research on the attenuation law of ground motion peak parameters[J]. Earthquake Engineering and Engineering Vibration, 1992, 1(02): 1-11. (in Chinese)
[14] 俞言祥. 长周期地震动衰减关系研究[D]. 中国地震局地球物理研究所, 2002.
Yu Yanxiang. Research on the attenuation relationship of long-period ground motions [D]. Institute of Geophysics, China Earthquake Administration, 2002. (in Chinese)
[15] 金星, 康兰池, 欧益萍. 福建地区中小地震加速度反应谱衰减规律[J]. 地震工程与工程振动, 2009, 29(05): 52-58.
Jin Xing, Kang Lanchi, Ou Yiping. Attenuation law of acceleration response spectrum of small and medium earthquakes in Fujian [J]. Earthquake Engineering and Engineering Vibration, 2009, 29(05): 52-58. (in Chinese)
[16] 李伟, 俞言祥, 肖亮. 阿里亚斯强度衰减关系分析[J]. 地震学报, 2017, 39(06): 921-929+976.
Li Wei, Yu Yanxiang, Xiao Liang. Analysis of the intensity attenuation relationship of Arias [J]. Journal of Seismology, 2017, 39(06): 921-929+976. (in Chinese)
[17] 喻畑, 李小军. 基于NGA模型的汶川地震区地震动衰减关系[J]. 岩土工程学报, 2012, 34(03): 552-558.
Yu Hao, Li Xiaojun. Ground motion attenuation relationship in Wenchuan earthquake area based on NGA model [J]. Journal of Geotechnical Engineering, 2012, 34(03): 552-558. (in Chinese)
[18] 卢大伟, 李小军, 崔建文. 汶川中强余震地震动峰值衰减关系[J].应用基础与工程科学学报, 2010, 18(S1): 138-151.
Lu Dawei, Li Xiaojun, Cui Jianwen. Wenchuan moderately strong aftershock peak ground motion attenuation relationship [J]. Journal of Applied Basic Science and Engineering, 2010, 18(S1): 138-151. (in Chinese)
[19] 党鹏飞, 刘启方. 基于NGA模型的芦山余震地震动衰减关系[J]. 地震工程学报, 2020, 42(06): 1706-1714.
Dang Pengfei, Liu Qifang. Lushan aftershock attenuation relationship based on NGA model [J]. Journal of Earthquake Engineering, 2020, 42(06): 1706-1714. (in Chinese)
[20] 冀昆, 温瑞智, 任叶飞, 等. NGA模型在芦山地震区的适用性[J]. 岩石力学与工程学报, 2016, 35(S1): 2990-2999.
Ji Kun, Wen Ruizhi, Ren Yefei, Wang Hongwei, Huang Xutao. Applicability of NGA model in the Lushan earthquake zone [J]. Journal of Rock Mechanics and Engineering, 2016, 35(S1): 2990-2999. (in Chinese)
[21] Clough R W, Penzien J. Dynamics of structures [M]. New York: McGraw-Hill Book Co., 1975.
[22] Kanai K. Semi-empirical formula for the seismic characteristics of the ground motion [J]. Bulletin of the Earthquake Research Institute, 1957, 35(2): 309-325.
[23] Campbell K W. Near-source attenuation of peak horizontal acceleration [J]. Bulletin of the Seismological Society of America, 1981, 71(6): 2039-2070.
[24] 刘平, 罗奇峰.考虑样本分布不均的衰减关系的加权两步回归法[J]. 地震学报, 2014, 36(04): 711-718+3.
Liu Ping, Luo Qifeng. A weighted two-step regression method considering the attenuation relationship of uneven sample distribution [J]. Journal of Seismology, 2014, 36(04): 711-718+3. (in Chinese)
[25] Abrahamson N A, Youngs R R. A stable algorithm for regression analyses using the random effect model [J]. Bulletin of the Seismological Society of America, 1992, 82(1): 505-510.
[26] 安自辉, 李杰. 地震动随机函数模型研究(Ⅰ)—模型建立[J]. 地震工程与工程振动, 2009, 29(05):36-45.
An Zihui, Li Jie Study on random function model of ground motion (Ⅰ) - model establishment [J]. Earthquake engineering and engineering vibration, 2009,29(05): 36-45. (in Chinese)
[27] 丁艳琼, 李杰. 工程随机地震动物理模型的参数识别与统计建模[J].中国科学:技术科学, 2018, 48(12): 1422-1432.
Ding Yanqiong, Li Jie. Parameter identification and statistical modeling of engineering random ground motion physical model[J]. Chinese Science: technical science, 2018, 48 (12): 1422-1432. (in Chinese)
[28] 王鼎,李杰.工程地震动的物理随机函数模型[J].中国科学:技术科学,2011,41(03):356-364.
Wang Ding, Li Jie. Physical random function model of engineering ground motion [J]. Science of China: Science of technology, 2011, 41(03): 356-364. (in Chinese)
[29] 丁佳伟. 工程地震动时频非平稳性分析及应用[D]. 北京. 北京工业大学, 2020.
Ding Jiawei. Analysis and application of time-frequency non stationarity of engineering ground motion [D]. Beijing Beijing University of technology, 2020. (in Chinese)
[30] GB 50011—2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
GB 50011-2010, code for seismic design of buildings [S]. Beijing: China Architecture Industry Press, 2010. (in Chinese)
[31] 郭锋, 吴东明, 许国富, 等. 中外抗震设计规范场地分类对应关系. 土木工程与管理学报, 2011, 28: 63–66.
Guo Feng, Wu Dongming, Xu Guofu, et al. The  corresponding relationship of site classification in Chinese and foreign seismic design codes. Journal of Civil Engineering and Management, 2011, 28: 63-66. (in Chinese)
[32] 丁佳伟,何浩祥,闫晓宇.地震动功率谱改进模型及其在人工地震动合成中的应用[J].振动与冲击,2020,39(21):258-266.
Ding Jiawei, he Haoxiang, Yan Xiaoyu. Improved model of seismic power spectrum and its application in artificial ground motion synthesis [J]. Vibration and shock, 2020,39 (21): 258-266. (in Chinese)
[33] 姜云木,阮鑫鑫,刘章军.主余震型地震动过程的降维模拟[J].振动与冲击,2021,40(24):282-292.
Jiang yunmu, Ruan Xinxin, Liu Zhangjun. Dimension reduction simulation of main aftershock type ground motion process [J]. Vibration and shock, 2021,40 (24): 282-292. (in Chinese)
[34] Dziewonski A M, Anderson D L. Preliminary reference Earth model[J]. Physics of the earth and planetary interiors. 1981, 25(4): 297-356.
[35] Wong H L, Trifunac M D. Generation of artificial strong motion accelerograms[J]. Earthquake Engineering & Structural Dynamics, 1979, 7(6): 509-527.
[36] 宋萌. 工程随机地震动物理模型研究[D]. 上海: 同济大学, 2013.
Song Meng. Research on the physical model of engineering random ground motion [D]. Shanghai: Tongji University, 2013. (in Chinese)
[37] Amin M, Ang Alfredo H-S. Nonstationary random process model for earthquake motion. ASCE Journal of the Engineering Mechanics Division, 1968, 94(EM2): 559-583.
PDF(2107 KB)

414

Accesses

0

Citation

Detail

Sections
Recommended

/