Contrastive experiments for buffering capacities of solid and hollow particle materials under impact load

WANG Haoyu1, ZHAO Tingting1,2, FENG Yuntian1,3, LIANG Shaomin1, WANG Zhihua1

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (17) : 275-283.

PDF(2220 KB)
PDF(2220 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (17) : 275-283.

Contrastive experiments for buffering capacities of solid and hollow particle materials under impact load

  • WANG Haoyu1, ZHAO Tingting1,2, FENG Yuntian1,3, LIANG Shaomin1, WANG Zhihua1
Author information +
History +

Abstract

Compared with solid particle materials, hollow particle materials can achieve the purpose of lightening weight and saving material consumption which have the growth potential to become good buffering materials. On the basis of measuring the physical properties of the single hollow and solid particles, the buffering capacity of hollow and solid particle materials are studied by comparing the first peak of impact force and buffering time from physical experimental results. The effects of impact energy, particle bed thickness and particle size on buffering capacity of hollow and solid particle materials are investigated. The experimental results show that the elastic modulus and rebound coefficient of single hollow particle are smaller than that of solid particle. Under the low impact energy, the buffering efficiency of hollow particle materials are better than that of solid particle materials. When the impact energy is large, the advantage of hollow particle buffer capacity is mainly reflected in the weakening ability of peak impact force. The critical thickness of hollow particle materials is smaller than that of solid particle materials, but the buffering efficiency of hollow particle materials is worse than that of solid particle when the thickness of the particle bed is small. The influence of particle size on buffering capacity of hollow and solid particle materials presents opposite trends. The vibration energy dissipation is the main factor affecting the buffering capacity of hollow particle materials. The optimal buffering capacity of hollow particle materials can be achieved when the ratio of inner and outer diameters of hollow particles equals to a certain number. Therefore, when the particle size exceeds the equilibrium particle size, hollow particle materials no longer show better buffering capacity compared with solid materials.

Key words

particle materials / hollow particles / buffering capacity / impact load

Cite this article

Download Citations
WANG Haoyu1, ZHAO Tingting1,2, FENG Yuntian1,3, LIANG Shaomin1, WANG Zhihua1. Contrastive experiments for buffering capacities of solid and hollow particle materials under impact load[J]. Journal of Vibration and Shock, 2023, 42(17): 275-283

References

[1] 季顺迎,樊利芳,梁绍敏.基于离散元方法的颗粒材料缓冲性能及影响因素分析[J].物理学报,2016,65(10):104501.
JI Shunying, FAN Lifang, LIANG Shaomin, Buffer capacity of granular materials and its influencing factors based on discrete element method[J]. Acta Physica. Sinica, 2016,65(10):104501.
[2] 季顺迎,李鹏飞,陈晓东.冲击荷载下颗粒物质缓冲性能的试验研究[J].物理学报,2012,61(18):184703.
JI Shunying, LI Pengfei, CHEN Xiaodong. Experiments on shock-absorbing capacity of granular matter under impact load[J]. Acta Physica. Sinica, 2012,61(18):184703.
[3] MUETH D M, JAEGER H M, NAGEL S R. Force distribution in a granular medium[J]. Physical Review E, 1998, 57(3): 3164–3169.
[4] HOWELL D, BEHRINGER R P, VEJE C. Stress fluctuations in a 2D granular Couette experiment: a continuous transition[J]. Physical Review Letters, 1999, 82(26): 5241-5244.
[5] NORDSTROM K, LIM E, HARRINGTON M, et al. Granular dynamics during impact[J]. Physical Review Letters, 2014, 112(22): 228002.
[6] 余田,张国华,孙其诚,等.垂直振动激励下颗粒材料有效质量和耗散功率的研究[J].物理学报,2015,64(4): 044501.
YU Tian, ZHANG Guohua, SUN Qicheng, et al. Dynamic effective mass and power dissipation of the granular material under vertical vibration[J]. Acta Physica Sinica, 2015,64(4): 044501.
[7] TANAKA K, NISHIDA M, KUNIMOCHI T, et al. Discrete element simulation and experiment for dynamic response of two-dimensional granular matter to the impact of a spherical projectile[J]. Powder Technology, 2002, 124(1/2): 160-173.
[8] 王嗣强,季顺迎.基于超二次曲面的颗粒材料缓冲性能离散元分析[J].物理学报,2018,67(9):094501.
WANG Siqiang, JI Shunying. Discrete element analysis of buffering capacity of non-spherical granular materials based on super-quadric method[J]. Acta Physica. Sinica, 2018,67(9): 094501.
[9] 穆龙,张晨,张祺,等.非凸体颗粒材料缓冲性能的离散元模拟[J].太原理工大学学报,2019,50(2):226-233.
MU Long, ZHANG Chen, ZHANG Qi, et al. Buffering capacity of non-convex granular materials based on discrete element method[J]. Journal of Taiyuan University of Technology, 2019,50(2):226-233.
[10] SU Y, CHOI C E, NG C W W, et al. Eco-friendly recycled crushed glass for cushioning boulder impacts[J]. Canadian Geotechnical Journal, 2019, 56(9):1251-1260.
[11] SU Y, CUI Y, NG C W W, et al. Effects of particle size and cushioning thickness on the performance of rock-filled gabions used in protection against boulder impact[J]. Canadian Geotechnical Journal, 2019, 56(2): 198-207.
[12] HOU M, PENG Z, LIU R, et al. Projectile impact and penetration in loose granular bed[J]. Science and Technology of Advanced Materials, 2005, 6(7): 855-859.
[13] WALSH A M, HOLLOWAY K E, HABDAS P, et al. Morphology and scaling of impact craters in granular media[J]. Physical Review Letters, 2003, 91(10):104301.
[14] CLARK A H, BEHRINGER R P. Granular impact model as an energy-depth relation[J]. Epl, 2013, 101(6):64001-64006.
[15] KATSURAGI H, DURIAN D J. Unified force law for granular impact cratering[J]. Nature Physics, 2007, 3(6):420-423.
[16] ANTYPOV D, ELLIOTT J A , HANCOCK B C . Effect of particle size on energy dissipation in viscoelastic granular collisions[J]. Physical Review E, 2011, 84(2 Pt 1):021303.
[17] ZHAO Z, LIU C, BROGLIATO B. Energy dissipation and dispersion effects in granular media[J]. Physical Review E, 2008, 78(3):031307.
[18] 何思明,吴永,李新坡,等.颗粒弹塑性碰撞理论模型[J].工程力学,2008, 25(12): 19-24.
HE Siming, WU Yong, LI Xinpo,el al. Theoretical model on elastic-plastic granule impact[J]. Journal of Engineering Mechanics, 2008, 25(12): 19-24.
[19] OGALE S B , SHINDE S R , KARVE P A , et al. Impact-induced splash and spill in a quasi-confined granular medium[J]. Physica A Statistical Mechanics & Its Applications, 2006, 363(2):187-197.
[20] YE X, WANG D, ZHENG X. Influence of particle rotation on the oblique penetration in granular media[J]. Physical Review E, 2012, 86:061304.
[21] 孙其诚,王光谦.静态堆积颗粒中的力链分布[J].物理学报,2008, 57(8): 4667-4674.
SUN Qicheng, WANG Guangqian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica, 2008, 57(8): 4667-4674.
[22] 李鹏飞. 颗粒物质缓冲性能的试验测试与离散元分析[D]. 大连:大连理工大学,2013.
[23] YE X, WANG D, ZHENG X. Criticality of post-impact motions of a projectile obliquely impacting a granular medium[J]. Powder Technology, 2016, 301: 1044-1053.
[24] CLARK A H, PETERSEN A J, KONDIC L, et al. Nonlinear force propagation during granular impact[J]. Physical Review Letters, 2015, 114(14).
[25] 何思明,廖祖伟,刘威,等.颗粒物质冲击损伤特性研究[J].振动与冲击,2016, 35(23): 100-105.
HE Siming, LIAO Zuwei, LIU Wei, et al. Study on impact damage of granular material[J]. Journal of Vibration and Shock, 2016, 35(23): 100-105.
[26] 王振宇,周伟,马刚,等.水平振动情况下颗粒系统振动分离机理的离散元数值研究[J].振动与冲击,2016, 35(16): 24-29.
WANG Zhenyu, ZHOU Wei, MA Gang, et al. Numerical simulation of the microscopic mechanism of the particle separation under the condition of horizontal vibration[J]. Journal of Vibration and Shock, 2016, 35(16): 24-29.
[27] CORE A, KOPP J B, VIOT P, et al. Experimental investigation and discrete element modelling of composite hollow spheres subjected to dynamic fracture[J]. International Journal of Polymer Science, 2017,2017:1-15.
[28] CORE A, KOPP J B, GIRARDOT J, et al. Study of the dynamic fracture of hollow spheres under compression using the discrete element method[J]. Procedia Structural Integrity, 2018, 13:1378-1383.
[29] 范志强,何天明,刘迎彬,等.冲击载荷下脆性空心颗粒破碎机理[J]. 爆炸与冲击, 2021, 41(7): 10.
FAN Zhiqiang, HE Tianming, LIU Yingbin, et al. Breaking mechanisms of brittle hollow particles under impact loading[J]. Explosion and Shock Waves, 2021, 41(7): 10.
[30] FAN Zhiqiang, SUO Tao, NIE Taoyi, et al. Low-velocity impact response and breakage characteristics of hollow brittle particles[J]. International Journal of Impact Engineering, 2020, 150(1):103813.
PDF(2220 KB)

350

Accesses

0

Citation

Detail

Sections
Recommended

/