Fatigue life prediction of piezoelectric cantilever beam based on electromechanical response

FENG Yiting, LIU Wenguang, WU Xingyi

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (17) : 314-322.

PDF(4079 KB)
PDF(4079 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (17) : 314-322.

Fatigue life prediction of piezoelectric cantilever beam based on electromechanical response

  • FENG Yiting, LIU Wenguang, WU Xingyi
Author information +
History +

Abstract

Aiming at the fatigue problem of piezoelectric vibration energy harvester, the vibration fatigue life prediction method of piezoelectric cantilever beam based on electromechanical response is studied. Based on the residual stiffness theory and the "two-stage" fatigue life analysis model, a fatigue life prediction method of piezoelectric cantilever based on resonant frequency is proposed; The relationship model between the change of resonant frequency and the change of load power in the process of vibration fatigue is further analyzed, and a fatigue life prediction method of piezoelectric cantilever beam based on load power is proposed. The results show that the average error of the piezoelectric cantilever fatigue life prediction method based on resonant frequency is between 10%~ 20%, and the error range is controlled within 1.5 times the error line; The average error of the piezoelectric cantilever fatigue life prediction method based on load power is about 25%, and the error range is controlled within twice the error line, which belongs to the prediction effect of partial safety.

Key words

Piezoelectric cantilever beam / Vibration fatigue / Electromechanical response / Life prediction

Cite this article

Download Citations
FENG Yiting, LIU Wenguang, WU Xingyi. Fatigue life prediction of piezoelectric cantilever beam based on electromechanical response[J]. Journal of Vibration and Shock, 2023, 42(17): 314-322

References

[1] CORINA C and AUREL G. Piezoelectric Energy Harvesting Solutions: A Review[J]. Sensors, 2020, 20(12), 3512.
[2] SALAZAR R, SERRANO M, ABDELKEFI. A Fatigue in piezoelectric ceramic vibrational energy harvesting: A review[J]. Applied Energy, 2020, 270(C), 115161.
[3] STAMATELLOU A M, KALFAS A I, ANDELKEFI A, et al. Piezoelectric energy harvesting experiments under combined aerodynamic and base excitation[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(2): 169-181.
[4] 芮小博, 李一博, 曾周末. 压电悬臂梁振动能量收集器研究进展[J]. 振动与冲击, 2020, 39(17): 112-123.
RUI Xiaobo, LI Yibo, ZENG Zhoumoo. Research progress of piezoelectric cantilever vibration energy collector[J]. Journal of Vibration and Shock, 2020, 39(17): 112-123.
[5] YANG Z B, ZHOU S X, ZU JEA, et al. High-Performance Piezoelectric Energy Harvesters and Their Applications[J]. Joule, 2018, 2(4): 642-697.
[6] 徐振龙, 单小彪, 谢涛. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击, 2018,37(08): 190-199+205.
XU Zhenlong, SHAN Xiaobiao, XIE Tao. A review of broadband piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2018,37(08): 190-199+205.
[7] 王保林. 压电材料及其结构的断裂力学[M]. 北京: 国防工业出版社, 2003: 15-16.
[8] 邓启煌, 王连军, 王宏志, 等. 锆钛酸铅陶瓷在力电耦合场下疲劳性能的评价[J]. 无机材料学报, 2012, 27(04): 358-362.
DENG Qihuang, WANG Lianjun, WANG Hongzhi. Evaluation of fatigue of the lead zirconate titanate ceramics under electromechanical coupling field[J]. Journal of Inorganic Materials, 2012, 27(04): 358-362.
[8] OKAYASU M, SATO Y. New experimental techniques for in-situ measurement of the damage characteristics of piezoelectric ceramics under high cycle fatigue testing[J]. Experimental Mechanics, 2012, 52(8): 1009-1020.
[9] BONSI A K. Fatigue of Piezoelectric Beams Used In Vibration Energy Harvesting[D]. McGill University (Canada). 2010.
[10] PILLATSH P, XIAO B L, SHASHOUA N, et al. Degradation of bimorph piezoelectric bending beams in energy harvesting applications[J]. Smart Materials and Structures, 2017, 26(3): 035046.
[11] PANDEY A, AROCKIARAIAN A. Fatigue study on the sensor performance of macro fiber composite (MFC): Theoretical and experimental approach[J]. Composite Structures, 2017, 174: 301-318.
[12] AVVARI P V, YANG Y, SOH C K. Long-term fatigue behavior of a cantilever piezoelectric energy harvester[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(9): 1188-1210.
[13] PEDDIGARI M, KIM G Y, PARK C H, et al. A comparison study of fatigue behavior of hard and soft piezoelectric single crystal macro-fiber composites for vibration energy harvesting[J]. Sensors, 2019, 19(9): 2196.
[14] JANG J, HWANG G T, MIN Y, et al. Fatigue study and durability improvement of piezoelectric single crystal macro-fiber composite energy harvester[J]. Journal of the Korean Ceramic Society, 2020, 57: 645-650.
[15] PEDDIGARI M, KWAK M S, MIN Y, et al. Lifetime estimation of single crystal macro-fiber composite-based piezoelectric energy harvesters using accelerated life testing[J]. Nano Energy, 2021, 88: 106279.
[16] SALAZAR R, LARKIN K, ABDELKEFI A. Piezoelectric property degradation and cracking impacts on the lifetime performance of energy harvesters[J]. Mechanical Systems and Signal Processing, 2021, 156(11):107697.
[17] ERTURK A, INMAN D J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations[J]. Smart Materials and Structures, 2009, 18(2): 025009.
[18] ERTURK A, INMAN D J. On mechanical modeling of cantilevered piezoelectric vibration energy harvesters[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(11): 1311-1325.
[19] ZONG J, YAO W. Fatigue life prediction of composite structures based on online stiffness monitoring[J]. Journal of Reinforced Plastics and Composites, 2017,36(14):1038-1057.
PDF(4079 KB)

271

Accesses

0

Citation

Detail

Sections
Recommended

/