Theoretical investigation and numerical simulation of the natural vibration and internal  resonance of an axially moving ferromagnetic beam in magnetic field

CUI Xue1, KONG Xiangqing1, HU Yuda2

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (18) : 190-198.

PDF(2339 KB)
PDF(2339 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (18) : 190-198.

Theoretical investigation and numerical simulation of the natural vibration and internal  resonance of an axially moving ferromagnetic beam in magnetic field

  • CUI Xue1, KONG Xiangqing1, HU Yuda2
Author information +
History +

Abstract

The nonlinear two-way natural frequency and internal resonance of a ferromagnetic beam moving axially in a magnetic field are studied. The expressions of kinetic energy, potential energy, Lorentz force and magnetic couple of the beam are given. The magnetoelastic two-way coupling nonlinear vibration equation of the axially moving ferromagnetic beam in the magnetic field is derived according to the Hamilton principle. The multi-scale method is used to solve the coupling equation, and the expression of the natural frequency of bidirectional vibration is obtained. Further study the internal resonance of the beam when the natural frequencies of the two vibration directions are close to 1:1, and get the characteristic equations of mutual coupling. Through examples, the curves of the natural frequency of the beam with vibration time, magnetic induction intensity and axial velocity and the time history response diagram of energy exchange of resonance amplitude when the system has internal resonance are obtained. On this basis, the first twelve vibration modes and corresponding natural frequencies of the beam are calculated by using ABAQUS finite element analysis software. The numerical simulation results are in good agreement with the theoretical values.

Key words

Ferromagnetic beam / Natural frequency / internal resonance / Finite element

Cite this article

Download Citations
CUI Xue1, KONG Xiangqing1, HU Yuda2. Theoretical investigation and numerical simulation of the natural vibration and internal  resonance of an axially moving ferromagnetic beam in magnetic field[J]. Journal of Vibration and Shock, 2023, 42(18): 190-198

References

[1] MOTE C D. Dynamic stability of axially moving materials [J]. Journal of Shock and Vibration, 1972, 4(1): 2-11.
[2] THURMAN A L, MOTE C D. On the nonlinear oscillation of an axially moving string. Journal of Applied Mechanics, 1966, 33(4): 463-464.
[3] 彭丽, 丁虎, 陈立群. 粘弹性三参数地基上Timoshenko梁横向自由振动[J]. 噪声与振动控制, 2013, 33(5): 107-110.
PENG Li, DING Hu, CHENG Li-qun. Transverse free vibration of a timoshenko beam rested on three-parameter viscoelastic foundation [J]. Noise and Vibration Control,2013, 33(5): 107-110.
[4] CHEN Li-qun, TANG You-qi. Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions[J]. Journal of Vibration and Acoustics, 2011, 134(1): 245-246.
[5] 丁虎, 陈立群, 张国策. 轴向运动梁横向非线性振动模型研究进展[J]. 动力学与控制学报, 2013, 11(3): 20-30.
DING Hu, CHEN Li-qun,ZHANG Guo-ce. Advances in nonlinear models for transverse vibration of axially moving beams [J]. Journal of dynamics and control, 2013, 11(3): 20-30.
[6] 黄建亮,陈树辉. 纵向与横向振动耦合作用下轴向运动梁的非线性振动研究[J]. 振动与冲击,2011, 30(8): 24-27.
HUANG Jian-liang, CHEN Shu-hui. Study on nonlinear vibration of an axially moving beam with coupled transverse and longitudinal motions [J]. Vibration and impact, 2011, 30(8): 24-27.
[7] 郑晓静, 刘信恩. 铁磁导电梁式板在横向均匀磁场中的动力特性分析[J]. 固体力学学报, 2004, 21(3): 243-250.
ZHENG Xiao-jing, LIU Xin-en. Analysis on dynamic characteristics for ferromagnetic conducting plates in a transverse uniform magnetic field [J]. Chinese Journal of Solid Mechanics, 2004, 21(3): 243-250.
[8] 周又和, 郑晓静. 电磁固体结构力学[M]. 北京:科学出版社, 1999: 112-164.
ZHOU You-he, ZHENG Xiao-jing. Electromagnetic solid structural mechanics [M] Beijing: Science Press, 1999: 112-164.
[9] 周纪卿. 铁磁性梁的振动和动力稳定性[J]. 应用力学学报, 1988, 5(4): 82-88.
ZHOU Ji-qing. Vibration and dynamic stability of ferromagnetic beams [J]. Chinese Journal of Applied Mechanics, 1988, 5(4): 82-88.
[10] 胡宇达. 轴向运动导电薄板磁弹性耦合动力学理论模型[J]. 固体力学学报, 2013, 34(4): 417-425.
HU Yu-da. Magneto elastic coupling dynamic theoretical model of axially moving conductive thin plate [J]. Chinese Journal of Solid Mechanics, 2013, 34(4): 417-425.
[11] 胡宇达, 张立保. 轴向运动导电导磁梁的磁弹性振动方程[J]. 应用数学和力学, 2015, 36(1): 70-77.
HU Yu-da, ZHANG Li-bao. Magneto-elastic vibration equations for axially moving conductive and magnetic bea [J]. Applied mathematics and mechanics, 2015, 36(1): 70-77.
[12] 生帝,胡宇达.横向磁场中轴向运动铁磁梁的磁弹性主共振[J].力学季刊, 2019, 40(04): 753-761.
SHENG Di, HU Yu-da. Magnetoelastic primary resonance of axial moving ferromagnetic beams [J]. Chinese Quarterly of Mechanics, 2019, 40(04): 753-761.
[13] 刘星光, 唐有绮, 周远. 三种典型轴向运动结构的振动特性对比[J]. 力学学报, 2020, 52(02): 522-532.
LIU Xing-guang, TANG You-qi, ZHOU Yuan. Comparison of vibration characteristics of three typical axially moving structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(02): 522-532.
[14] .Li Bao-shuang, Zhang Wei. Global bifuractions and multi-pulse chaotic dynamics of rectangular thin plate with one-to-one internal resonance[J]. Applied Mathematics and Mechanics(English Edition), 2012, 33(9): 1115-1128
[15] 胡海良, 张伟. 两自由度非线性系统1:3内共振的渐进摄动分析[J], 动力学与控制学报, 2015, 13(2): 97-100.
HU Hai-liang, ZHANG Wei. Asymptotic perturbation analysis of two-degree-of-freedom nonlinear systems under one-to-three internal resonance [J], Applied Mathematics and Mechanics, 2015, 13(2): 97-100.
[16] 黄玲璐,毛小晔,丁虎,等. 内共振作用下轴向运动黏弹性梁横向受迫振动[J], 振动与冲击, 2017, 36(17): 69-73.
HUANG Ling-lu, MAO Xiao-ye, DING Hu. Transverse non-linear forced vibration of an axially moving viscoelastic beam with an internal resonance [J], Journal of Vibration and Shock, 2017, 36(17): 69-73.
[17]  MOON F C, PAO Y H. Vibration and dynamic instability of a beam-plate in a transverse magnetic field[J]. Journal of Appiled Mechanics, 1969, 36(1): 92-100.
PDF(2339 KB)

470

Accesses

0

Citation

Detail

Sections
Recommended

/