Effects of low temperature environment on acoustic performance of porous material

WAN Zhong1, JIA Fuxin2, MA Wengeng2, SUN Ming3, SUN Limin4

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (19) : 260-265.

PDF(1871 KB)
PDF(1871 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (19) : 260-265.

Effects of low temperature environment on acoustic performance of porous material

  • WAN Zhong1, JIA Fuxin2, MA Wengeng2, SUN Ming3, SUN Limin4
Author information +
History +

Abstract

For the influence of a low-temperature environment on the acoustic properties of porous outfitting materials, the acoustic characteristic parameters test of the impedance tube is carried out. Based on the transfer function method, the study carries out the different environmental factors that influence ship outfitting material acoustic performance test study. The law of the influence of temperature and moisture content on the acoustic properties of glass wool material is given. On this basis, the port icebreaker as an example to analyze the effect of the low-temperature acoustic performance of glass wool material on the cabin noise. The study shows that the high-frequency sound absorption coefficient of wet glass wool at low temperatures will decrease significantly with increasing moisture content, and the insertion loss will increase with increasing moisture content. However, the changes in the acoustic properties of porous outfitting materials resulting in the polar environment do not innoise.

Key words

Low temperature environment / Porous material / Acoustic performance / Impedance tube method / Cabin noise;

Cite this article

Download Citations
WAN Zhong1, JIA Fuxin2, MA Wengeng2, SUN Ming3, SUN Limin4. Effects of low temperature environment on acoustic performance of porous material[J]. Journal of Vibration and Shock, 2023, 42(19): 260-265

References

[1] 张俊武,吴清伟,赵旭. 极地冰区船舶发展分析[J]. 船舶工程, 2016, 38(11): 1-5, 57.
ZHANG Jun-wu, WU Qing-wei, ZHAO Xu. The analysis of ship development in polar ice zone [J]. ship engineering, 2016, 38(11): 1-5, 57.
[2] 王志国,赵子琦,郑刚,等. 基于REV的保温多孔材料传热“三箱”分析模型[J]. 工程热物理学报, 2021, 42(8): 1950-1957.
WANG Zhi-guo, ZHAO Zi-qi, ZHENG Gang, et al. A "three-box" analysis model of heat transfer of insulated porous materials based on REV [J]. Journal of Engineering Thermophysics, 2021,42 (8): 1950-1957.
[3] 陈鑫,马文婷,郝耀东,等. 梯度弹性多孔材料吸声性能分析与优化设计[J]. 振动与冲击,2021, 40(9): 270-277.
CHEN Xin, MA Wen-ting, HAO Yao-dong, et al. The analysis and optimization design of gradient elastic porous material [J]. Journal of vibration and shock, 2021,40 (9): 270-277.
[4] M. A. Biot. Theory of Elasticity and Consolidation for a Porous Anisotropic Solid[J]. Journal of Applied Physics, 1955, 26(2).
[5] Delany M.E. Bazley E.N.. Acoustical properties of fibrous absorbent materials[J]. Applied Acoustics, 1970, 3(2).
[6] 刘新金,刘建立,徐伯俊,等. 分层多孔材料吸声结构的性能分析[J]. 振动与冲击,2012, 31(5): 106-110, 117.
LIU Xin-jin, LIU Jian-li, XU Bo-jun, et al. The performance analysis of sound absorption structures of layered porous materials [J]. Journal of vibration and shock, 2012,31 (5): 106-110,117.
[7] 刘耀光,王晓林. 黏弹性泡沫多孔材料骨架特征参数对材料吸声性能的影响[J]. 振动与冲击,2016, 35(20): 137-141, 159.
LIU Yao-guang, WANG Xiao-lin. The effect of the characteristic parameters of the viscoelastic foam porous material skeleton on the sound absorption properties of the material [J]. Journal of vibration and shock, 2016,35 (20): 137-141,159.
[8] 宁少武,史治宇,李晓松. 流场中填充吸声材料夹层板结构的声振耦合特性[J]. 振动与冲击,2016, 35(3): 107-113.
NING Shao-wu, SHI Zhi-yu, LI Xiao-song. The acoustic vibration coupling characteristics of filled sound absorbing material in flow field [J]. Journal of vibration and shock, 2016,35 (3): 107-113.
[9] 陈林,李磊,张航,等. 声学材料表面铺层对船舶舱室噪声影响研究[J]. 舰船科学技术,2021, 43(17): 74-79.
CHEN Lin, LI Lei, ZHANG Hang, et al. The study on the surface influence of acoustic material bedding on ship cabin noise [J]. Ship Science and Technology, 2021,43 (17): 74-79.
[10] 宁方立,张畅通,宁舜山,等. 多孔材料对空腔噪声抑制效果研究[J]. 振动与冲击,2020, 39(11): 31-37, 44.
NING Fang-li, ZHANG Chan-tong, NING Shun-shan, etc. The effect of porous materials on cavity noise suppression [J]. Journal of vibration and shock, 2020,39 (11): 31-37,44.
[11] 周宏,李瑞,刘俊,等. 豪华邮船舱室绝缘敷设安装工艺[J]. 船舶工程,2021, 43(11): 144-149.
ZHOU Hong, LI Rui, LIU Jun, et al. Insulation laying and installation technology of luxury shipping cabin [J]. Ship Engineering, 2021,43 (11): 144-149.
[12] 张波,陈天宁,冯凯,等. 烧结金属纤维多孔材料的高温吸声性能[J]. 西安交通大学学报,2008(11): 1327-1331.
ZHANG Bo, CHEN Tian-ning, FENG Kai, et al. The high-temperature sound absorption properties of sintered metallic fiber porous materials [J]. Journal of Xi'an Jiaotong University, 2008 (11): 1327-1331.
[13] 李伟,赵芙蓉. 常用室内吸声材料吸声性能试验研究[J]. 城市住宅,2019, 26(12): 117-120.
LI Wei, ZHAO Fu-rong. The study on acoustic absorption properties of commonly used indoor acoustic absorption materials [J]. Urban Housing, 2019,26 (12): 117-120.
[14] 王志斌,马文庚,贾福鑫,等. 低温环境对船舶舾装材料声学性能的影响[J]. 舰船科学技术,2022, 44(9): 7-11.
WANG Zhi-bin, MA Wen-geng, JIA Fuxin, et al. Effects of low-temperature environment on the acoustic properties of ship outfitting materials [J]. Ship Science and Technology, 2022,44 (9): 7-11.
[15] 张鹏. 内河破冰船的冰激船体结构振动与舱室噪声试验研究[D]. 哈尔滨工程大学,2017.
Zhang Peng. Study on the structural vibration and cabin noise of Inland River Icebreaker [D]. Harbin Engineering University, 2017.
PDF(1871 KB)

Accesses

Citation

Detail

Sections
Recommended

/